【题目】在四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为平行四边形,AA1⊥平面ABCD,∠BAD=60°,AB=2,BC=1.AA1= ,E为A1B1的中点.
(1)求证:平面A1BD⊥平面A1AD;
(2)求多面体A1E﹣ABCD的体积.
【答案】
(1)证明:∵AB=2,AD=BC=1,∠BAD=60°,
∴BD= = ,
∴BD2+AD2=AB2,∴AB⊥AD,
∵AA1⊥平面ABCD,BD平面ABCD,
∴BD⊥AA1,又AA1∩AD=A,AA1平面A1AD,AD平面A1AD,
∴BD⊥平面A1AD,又BD平面A1BD,
∴平面A1BD⊥平面A1AD.
(2)解:连接A1C,S四边形ABCD=2S△ABD=2× = ,
∴V = = = ,
设C到AB的距离为h,则h= = ,则C到平面ABB1A1的距离为h= ,
∴V = = = .
∴多面体A1E﹣ABCD的体积V=V +V = .
【解析】(1)求出BD,再利用勾股定理的逆定理证明BD⊥AD,结合BD⊥AA1即可得出BD⊥平面A1AD,从而平面A1BD⊥平面A1AD;(2)将多面体分解成三棱锥C﹣A1BE和四棱锥A1﹣ABCD,分别计算两个棱锥的体积即可得出多面体的体积.
【考点精析】认真审题,首先需要了解平面与平面垂直的判定(一个平面过另一个平面的垂线,则这两个平面垂直).
科目:初中数学 来源: 题型:
【题目】如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732, ≈1.732, ≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1 cm)(参考数据:sin15°≈0.26,cos15°≈0.97, tan15°≈0.27, ≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设不等式0<|x+2|﹣|1﹣x|<2的解集为M,a,b∈M
(1)证明:|a+ b|< ;
(2)比较|4ab﹣1|与2|b﹣a|的大小,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.
分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设函数f(x)=x3﹣2ex2+mx﹣lnx,记g(x)= ,若函数g(x)至少存在一个零点,则实数m的取值范围是( )
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2﹣ ,e2+ ]
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程 ,其中 , ,据此模型预测广告费用为9万元时,销售轿车台数为( )
广告费用x(万元) | 2 | 3 | 4 | 5 | 6 |
销售轿车y(台数) | 3 | 4 | 6 | 10 | 12 |
A.17
B.18
C.19
D.20
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com