【题目】如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点 D.
(1)用t表示点D的坐标 ;
(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;
(3)如图2,当BC平分∠ABO时,求t的值.
【答案】(1)(0,2t);(2)见解析;(3)t=4(﹣1)
【解析】
(1)由已知条件可证明△ABC≌△OAD,根据全等三角形的性质即可求出点D的坐标;
(2)由(1)的结论可证明△FOD≌△FOC,从而∠FCO=∠FDO,再根据(1)中△ABC≌△OAD,可得∠ACB=∠ADO,进而∠FCO=∠ACB得证;
(3)在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK=m,根据角平分线的性质和三角形外角和定理可得KB=KC=m,从而求得m的值,进而t的值也可求出.
解:(1)∵AD⊥BC,
∴∠AEB=90°=∠BAC=∠AOD,
∴∠ABC+∠BAE=90°,∠BAE+∠OAD=90°,
∴∠ABC=∠OAD,
∵AB=OA,
∴△ABC≌△OAD(ASA),
∴OD=AC=2t,
∴D(0,2t).
故答案为(0,2t);
(2)如图1中,
∵AB=AO,∠BAO=90°,OB=,
∴AB=AO=8,
∵t=2,
∴AC=OD=4,
∴OC=OD=4,
∵OF=OF,∠FOD=∠FOC,
∴△FOD≌△FOC(SAS),
∴∠FCO=∠FDO,
∵△ABC≌△OAD,
∴∠ACB=∠ADO,
∴∠FCO=∠ACB;
(3)如图2中,在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK=m.
∵CB平分∠ABO,
∴∠ABC=22.5°,
∵∠AKC=45°=∠ABC+∠KCB,
∴∠KBC=∠KCB=22.5°,
∴KB=KC=m,
∴m+m=8,
∴m=8(),
∴t==4(﹣1).
科目:初中数学 来源: 题型:
【题目】ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是 , ∠AFB=∠ .
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ.
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,过点B作BD⊥AB,过点C作CD⊥BC,两线相交于点D,AF平分∠BAC交BC于点E,交BD于点F.
(1)若∠BAC=68°,求∠DBC;
(2)求证:点F为BD中点;
(3)若AC=BD,且CD=3,求四边形ABDC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,AB=BC,O是△ABC内部的一个动点,△OBD是等腰直角三角形,OB=BD.
(1)求证:∠AOB=∠CDB;
(2)若△COD是等腰三角形,∠AOC=140°,求∠AOB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.
(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;
(2)求出水柱的最大高度的多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).
(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;
(2)求出△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com