4£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãAÔÚxÖáµÄ¸º°ëÖáÉÏ£¬µãBÔÚxÖáµÄÕý°ëÖáÉÏ£®CÔÚyÖáµÄ¸º°ëÖáÉÏ£¬ACËùÔÚÖ±ÏßΪy=kx-12£®AC¡ÍBC£®BCµÄ³¤µÄ$\frac{1}{3}$±¶ÊÇ·½³Ìx2-3x-10=0µÄ¸ù£®
£¨1£©ÇóµãA£¬BµÄ×ø±ê£»
£¨2£©ÈôÖ±ÏßL¾­¹ýµãCÇÒÆ½·Ö¡÷AOCµÄÃæ»ý£¬ÇóÖ±ÏßLµÄ½âÎöʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏÂÉèÖ±ÏßL½»xÖáÓÚµãD£¬ÔÚyÖáÉÏÊÇ·ñ´æÔÚµãP£ºÊ¹ÒÔµãA£¬D£¬P£¬CΪ¶¥µãµÄËıßÐÎÊÇÌÝÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ê×ÏȽⷽ³ÌÇóµÃ·½³ÌµÄ½â£¬ÔòBCµÄ³¤¶È¼´¿ÉÇóµÃ£¬È»ºóÖ¤Ã÷¡÷AOC¡×¡÷COB£¬¸ù¾ÝÏàËÆÈý½ÇÐεĶÔÓ¦±ßµÄ±ÈÏàµÈ¼´¿ÉÇóµÃOAµÄ³¤£¬ÔòAµÄ×ø±ê¼´¿ÉÇóµÃ£»
£¨2£©Ö±ÏßL¾­¹ýµãCÇÒÆ½·Ö¡÷AOCµÄÃæ»ý£¬ÔòÖ±ÏßÒ»¶¨¾­¹ýOAµÄÖе㣬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó½â£»
£¨3£©·Ö³ÉËıßÐÎACPDÊÇÌÝÐκÍËıßÐÎAPCDÊÇÌÝÐÎÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬µ±ËıßÐÎACPDÊÇÌÝÐÎʱ£¬Ê×ÏÈÇóµÃACµÄ½âÎöʽ£¬¸ù¾ÝAC¡ÎPD¼´¿ÉÇóµÃPDµÄ½âÎöʽ£¬ÔòPµÄ×ø±ê¼´¿ÉÇóµÃ£¬Í¬ÀíÇóµÃËıßÐÎAPCDÊÇÌÝÐÎʱPµÄ×ø±ê£®

½â´ð ½â£º£¨1£©½â·½³Ìx2-3x-10=0µÃx1=5£¬x2=-2£¬
ÔòBC=3¡Á5=15£¬
ÔÚy=kx-12ÖУ¬Áîx=0£¬½âµÃy=-12£¬ÔòCµÄ×ø±êÊÇ£¨0£¬-12£©£¬OC=12£®
ÔÚÖ±½Ç¡÷BOCÖУ¬OB=$\sqrt{B{C}^{2}-O{C}^{2}}$=$\sqrt{1{5}^{2}-1{2}^{2}}$=9£¬ÔòBµÄ×ø±êÊÇ£¨0£¬9£©£®
¡ß¡ÏACB=90¡ã£¬¼´¡ÏACO+¡ÏBCO=90¡ã£¬
ÓÖ¡ßÖ±½Ç¡÷AOCÖУ¬¡ÏACO+¡ÏCAO=90¡ã£¬
¡à¡ÏBCO=¡ÏCAO£¬
ÓÖ¡ß¡ÏAOC=¡ÏBOC£¬
¡à¡÷AOC¡×¡÷COB£¬
¡à$\frac{OA}{OC}$=$\frac{OC}{OB}$£¬
¡à$\frac{OA}{12}$=$\frac{12}{9}$£¬
½âµÃ£ºOA=16£¬
ÔòAµÄ×ø±êÊÇ£¨-16£¬0£©£»
£¨2£©OAµÄÖеãDÊÇ£¨-8£¬0£©£¬
ÉèÖ±ÏßLµÄ½âÎöʽÊÇy=kx+b£¬
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{-8k+b=0}\\{b=-12}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{3}{2}}\\{b=-12}\end{array}\right.$£¬
ÔòÖ±ÏßLµÄ½âÎöʽÊÇy=-$\frac{3}{2}$x-12£»
£¨3£©µ±ËıßÐÎACPDÊÇÌÝÐÎʱ£¬Èçͼ1£®
ÉèACµÄ½âÎöʽÊÇy=mx+n£¬¸ù¾ÝÌâÒâµÃ$\left\{\begin{array}{l}{-16m+n=0}\\{n=-12}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=-\frac{3}{4}}\\{n=-12}\end{array}\right.$£¬
ÔòÖ±ÏßACµÄ½âÎöʽÊÇy=-$\frac{3}{4}$x-12£¬
ÉèDPµÄ½âÎöʽÊÇy=-$\frac{3}{4}$x+c£¬Ôò6+c=0£¬
½âµÃ£ºc=-6£®
ÔòDPµÄ½âÎöʽÊÇy=-$\frac{3}{4}$x-6£¬
Áîx=0£¬½âµÃy=-6£¬ÔòPµÄ×ø±êÊÇ£¨0£¬-6£©£»
µ±ËıßÐÎAPCDÊÇÌÝÐÎʱ£¬Èçͼ2£¬
ͬÀí£¬CDµÄ½âÎöʽÊÇy=-$\frac{3}{2}$x-12£¬
APµÄ½âÎöʽÊÇy=-$\frac{3}{2}$x-24£¬ÔòPµÄ×ø±êÊÇ£¨0£¬-24£©£®
¹ÊPµÄ×ø±êÊÇ£¨0£¬-6£©»ò£¨0£¬-24£©£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬ÒÔ¼°ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬ÕýÈ·½øÐÐÌÖÂÛÊDZ¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼ÆË㣺$\sqrt{18}-2sin45¡ã+|-\sqrt{2}|$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªy1=$\frac{1}{3}$£¨x+2£©£¬y2=$\frac{1}{2}$x-1£¬Èç¹ûy1=3y2-1£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬Õý·½ÐÎABCDÄÚ½ÓÓÚ¡ÑO£¬µãEÔÚÁÓ»¡$\widehat{AD}$ÉÏ£¬Ôò¡ÏAEDµÈÓÚ£¨¡¡¡¡£©
A£®100¡ãB£®120¡ãC£®135¡ãD£®150¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=x+$\frac{1}{2}m$µÄͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{m}{x}$µÄͼÏóÔÚµÚÒ»ÏóÏÞÄÚ½»ÓÚµãA£¬ÓëxÖá½»ÓÚµãC£¬AB´¹Ö±ÓÚXÖᣬ´¹×ãΪB£¬ÇÒÈý½ÇÐÎAOBµÄÃæ»ýΪ1£®
£¨1£©ÇómµÄÖµ£»
£¨2£©ÇóÈý½ÇÐÎABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏAµÄƽ·ÖÏßAD=4£¬¡ÏDAC=30¡ã£¬½âÖ±½Ç¡÷ABC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈçͼÊÇÒ»¸öÈýÀâÖùµÄÈýÊÓͼ£¬ÈôAB=5£¬CD=2£¬ÔòEFµÄ³¤¶È²»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®4B£®4.5C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬ÉÏÎç8ʱ£¬Ò»ËÒÂÖ´¬´ÓA´¦³ö·¢ÒÔÿСʱ20º£ÀïµÄËÙ¶ÈÏòÕý±±º½ÐУ¬10ʱµ½´ïB´¦£¬ÔòÂÖ´¬ÔÚA´¦²âµÃµÆËþCÔÚ±±Æ«Î÷36¡ã£¬º½Ðе½B´¦Ê±£¬ÓÖ²âµÃµÆËþCÔÚ±±Æ«Î÷72¡ã£¬Ôò´ÓBµ½µÆËþCµÄ¾àÀëÊÇ40º£À

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Çëд³öÒ»¸öÈýÏîʽ£¬ÄãÏÈÌáÈ¡¹«Òòʽ£¬ÔÙÀûÓù«Ê½·¨·Ö½âÒòʽ£®Äãд³öµÄÈýÏîʽÊÇa3+2a2b+ab2£¬·Ö½âÒòʽµÄ½á¹ûÊÇa£¨a+b£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸