【题目】已知:,是圆的两条直径,连接,.
如图①,求证:,;
如图②,过点作于点,交圆于点,在上取一点,使,
求证:四边形是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=,CD=a,请用a表示⊙O的半径;
(3)求证:GF2﹣GB2=DFGF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
港珠澳大桥是中国中央政府支持香港、澳门和珠三角地区城市快速发展的一项重大举措,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门,止于珠海洪湾,总长 55 千米,是粤港澳三地首次合作共建的超大型跨海交通工程.某天,甲乙两辆巴士均从香港口岸人工岛出发沿港珠澳大桥开往珠海洪湾,甲巴士平均每小时比乙巴士多行驶 10 千米,其行驶时间是乙巴士行驶时间的.求乘坐甲巴士从香港口岸人工岛出发到珠海洪湾需要多长时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,△ABC的周长为38cm,∠BAC=140°,AB+AC=22cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.
(1)求∠EAF的度数.
(2)求△AEF的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图2211抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)抛物线线上是否存在一点P,使,若存在,请求出点的坐标;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(-1,0),B(4,0)C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两张完全相同的矩形纸片、按如图方式放置,为重合的对角线.重叠部分为四边形,
试判断四边形为何种特殊的四边形,并说明理由;
若,,求四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com