【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A,D两点,交AB于点E,交AC于点F
(1)求证:BC是⊙O的切线;
(2)若⊙O半径是2cm,F是弧AD的中点,求阴影部分的面积(结果保留π和根号)
科目:初中数学 来源: 题型:
【题目】抛物线与
轴交于
两点,与
轴交于
,其中
,点
为抛物线上一动点,过点
作
平行
交抛物线于
,
(1)求抛物线的解析式;
(2)①当两点重合时时,
所在直线解析式为_____________.
②在①的条件下,取线段中点
,连接
,判断以点
为顶点的四边形是什么四边形,并说明理由?
(3)已知,连接
,
轴,交
于
,
轴上有一动点
,
,
的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若中,其中一个内角是另一个内角的一半,则称
为“半角三角形”.
(1)若为半角三角形,
,则其余两个角的度数为 .
(2)如图1,在平行四边形中,
,点
在边
上,以
为折痕,将
向上翻折,点
恰好落在
边上的点
,若
,求证:
为半角三角形;
(3)如图2,以的边
为直径画圆,与边
交于
,与边
交于
,已知
的面积是
面积的
倍.
①求证:.
②若是半角三角形,
,直接写出
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在图①②中,点E在矩形ABCD的边BC上,且BE=AB,现要求仅用无刻度的直尺分别按下列要求画图.[保留画(作)图痕迹,不写画(作)法]
(1)在图①中,画∠BAD的平分线;
(2)在图②中,画∠BCD的平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①为汽车沿直线运动的速度v(m/s)与时间t(s)(0≤t≤40)之间的函数图象.根据对此图象的分析、理解,在图②中画出描述在这段时间内汽车离开出发点的路程s(m)与时间t(s)之间的函数图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:
①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
则四边形ADCE的周长为( )
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+(4a﹣1)x﹣4与x轴交于点A、B,与y轴交于点C,且OC=2OB,点D为线段OB上一动点(不与点B重合),过点D作矩形DEFH,点H、F在抛物线上,点E在x轴上.
(1)求抛物线的解析式;
(2)当矩形DEFH的周长最大时,求矩形DEFH的面积;
(3)在(2)的条件下,矩形DEFH不动,将抛物线沿着x轴向左平移m个单位,抛物线与矩形DEFH的边交于点M、N,连接M、N.若MN恰好平分矩形DEFH的面积,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小龙虾养殖大户为了更好地发挥技术优势,一次性收购了20000kg小龙虾,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;
(2)设这批小龙虾放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.
①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;
②设将这批小龙虾放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;
(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;
(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com