精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:

分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;

连接MN,分别交AB、AC于点D、O;

CCE∥ABMN于点E,连接AE、CD.

则四边形ADCE的周长为(  )

A. 10 B. 20 C. 12 D. 24

【答案】A

【解析】

根据题意得:MN是AC的垂直平分线,即可得AD=CD,AE=CE,然后由CE∥AB,可证得CD∥AE,继而证得四边形ADCE是菱形,再根据勾股定理求出AD,进而求出菱形ADCE的周长.

:∵分别以A、C为圆心,以大于 AC的长为半径在AC两边作弧,交于两点M、N,
∴MN是AC的垂直平分线,
∴AD=CD,AE=CE,
∴∠CAD=∠ACD,∠CAE=∠ACE,
∵CE∥AB,
∴∠CAD=∠ACE,
∴∠ACD=∠CAE,
∴CD∥AE,
∴四边形ADCE是平行四边形,
∴四边形ADCE是菱形;
∴OA=OC=AC=2,OD=OE,AC⊥DE,
∵∠ACB=90°,
∴DE∥BC,
∴OD是△ABC的中位线,
∴OD=BC=×3=1.5,
∴AD==2.5,
∴菱形ADCE的周长=4AD=10.
故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C为线段AB上一点,点DBC的中点,且AB18cmAC4CD

1)图中共有   条线段;

2)求AC的长;

3)若点E在直线AB上,且EA2cm,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,BD是对角线,且DB⊥BC,E、F分别为边AB、CD的中点.求证:四边形DEBF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.24, ≈2.45)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:

甲:(1)以点C为圆心,AB长为半径画弧;

(2)以点A为圆心,BC长为半径画弧;

(3)两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1)

乙:(1)连接AC,作线段AC的垂直平分线,交AC于点M;

(2)连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).

对于两人的作业,下列说法正确的是(  )

A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=(m+1)x+2m-6.

(1)若函数图象过(-1,2),求此函数的解析式;

(2)若函数图象与直线y=2x+5平行,求其函数的解析式;

(3)求满足(2)条件的直线与直线y=-3x+1的交点,并求这两条直线与y轴所围成的三角形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)

A方法:剪6个侧面; B方法:剪4个侧面和5个底面。

现有19张硬纸板,裁剪时张用A方法,其余用B方法。

1)用的代数式分别表示裁剪出的侧面和底面的个数;

2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,横、纵坐标都为整数的点称为整点.如图,从内向外依次为第个正方形(实线),若整点在第个正方形的边上,则之间满足的数量关系为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OAOCOBOD,四位同学分别说了自己的观点.

甲:∠AOB∠COD.

乙:∠BOC∠AOD180°.

丙:∠AOB∠COD都是∠BOC的余角.

丁:图中小于平角的角有4个.

其中正确的结论有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案