精英家教网 > 初中数学 > 题目详情

【题目】如图,OAOCOBOD,四位同学分别说了自己的观点.

甲:∠AOB∠COD.

乙:∠BOC∠AOD180°.

丙:∠AOB∠COD都是∠BOC的余角.

丁:图中小于平角的角有4个.

其中正确的结论有( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根据同角的余角相等、垂直的定义求解并作答.

解:根据同角的余角相等可得,∠AOB=COD,故甲正确;
BOC+AOD=BOC+AOB+BOD=AOC+BOD=90°+90°=180°,故乙正确;
OAOCOBOD,可得∠AOB与∠COD都是∠BOC的余角,故丙正确;
图中小于平角的角有∠COD,∠BOD,∠AOD,∠BOC,∠AOC,∠AOB六个,故丁错误.
正确的有3个.
故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:

分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;

连接MN,分别交AB、AC于点D、O;

CCE∥ABMN于点E,连接AE、CD.

则四边形ADCE的周长为(  )

A. 10 B. 20 C. 12 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的不等式x﹣1.

(1)当m=1时,求该不等式的解集;

(2)m取何值时,该不等式有解,并求出解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强爱国主义教育,提高思想道德素质,某中学决定组织部分班级去山西国民师范旧址革命活动纪念馆开展红色旅游活动,在参加此次活动的师生中,若每位教师带17名学生,还剩12名学生没人带;若每位教师带18名学生,就有一位教师少带4名学生.现有甲、乙两种大客车,两种客车的载客量和租金如下表所示.

类别

甲种客车

乙种客车

载客量(人/辆)

30

42

租金(元/辆)

300

420

1)参加此次红色旅游活动的教师和学生各有多少人?

2)为了安全,每辆客车上要有2名教师.则怎样租车可以保证师生均有车坐,而且每辆车上都没有空座,也不超载,此时租车的费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】好学小东同学,在学习多项式乘以多项式时发现:(x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x2x3x3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×5×(-6)+2×(-6)×4+3×4×5-3,即一次项为-3x

请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.

(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为_____

(2)(x+6)(2x+3)(5x-4)所得多项式的二次项系数为_______

(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;

(4)(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是线段DE上一点,∠BAC=90°,AB=ACBDDECEDE

1)求证:DE=BD+CE

2)如果是如图2这个图形,BDCEDE有什么数量关系?并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.

[定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述).

[尝试证明]以图(1)中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理.

[知识拓展]利用图(2)中的直角梯形,我们可以证明.其证明步骤如下:

BC=a+b,AD=________,

在直角梯形ABCD中,有BC________AD(填大小关系),即________,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是直线AC上一点,OB是一条射线,OD平分∠AOBOE∠BOC内部,∠BOE∠EOC,∠DOE70°,求∠EOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠ACB90°AC2CB4.点P为线段CB上一动点,连接APAPCAPC关于直线AP对称,其中点C的对称点为点C.直线m过点A且平行于CB

1)如图①:连接AB,当点C落在线段AB上时,求BC的长;

2)如图②:当PCBC时,延长PC交直线m于点D,求ADC面积;

3)在(2)的条件下,连接BC,直接写出线段BC的长.

查看答案和解析>>

同步练习册答案