【题目】已知函数y=(m+1)x+2m-6.
(1)若函数图象过(-1,2),求此函数的解析式;
(2)若函数图象与直线y=2x+5平行,求其函数的解析式;
(3)求满足(2)条件的直线与直线y=-3x+1的交点,并求这两条直线与y轴所围成的三角形面积.
【答案】(1)y=10x+12(2)y=2x-4(3)
【解析】(1)将点(-1,2)代入函数解析式求出m即可;
(2)根据两直线平行即斜率相等,即可得关于m的方程,解方程即可得;
(3)联立方程组求得两直线交点坐标,再求出两直线与y轴的交点坐标,根据三角形面积公式列式计算即可.
解:(1)依题意,得2=(m+1)×(-1)+2m-6.
解得m=9,
∴此函数的解析式为y=10x+12.
(2)依题意,得m+1=2,∴m=1.
∴函数的解析式为y=2x-4.
(3)联立,解得 ,
∴交点坐标是(1,-2).
当x=0时,2×0-4=-4,-3×0+1=1,
即两条直线与y轴的交点分别为(0,-4),(0,1).
∴所求三角形面积是×(4+1)×1=..
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+ax+a-2=0
(1)若该方程有一个实数根为1,求a的值及方程的另一实根.
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】判断下列各式是否正确.
(1)若|a|>|b|,则a>b;( ).
(2)若a>b,则|a|>|b|;( ).
(3)若a>b,则|b-a|=a-b.( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y1≠y2时,取y1,y2中的较大值记为N;当y1=y2时,N=y1=y2.则下列说法:①当0<x<2时,N=y1;②N随x的增大而增大的取值范围是x<0;③取y1,y2中的较小值记为M,则使得M大于4的x值不存在;④若N=2,则x=2﹣或x=1.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com