【题目】定义:若中,其中一个内角是另一个内角的一半,则称为“半角三角形”.
(1)若为半角三角形,,则其余两个角的度数为 .
(2)如图1,在平行四边形中,,点在边上,以为折痕,将向上翻折,点恰好落在边上的点,若,求证:为半角三角形;
(3)如图2,以的边为直径画圆,与边交于,与边交于,已知的面积是面积的倍.
①求证:.
②若是半角三角形,,直接写出的取值范围.
【答案】(1)45°,45°或30°,60°;(2)见解析;(3)①见解析,②0≤BN≤3
【解析】
(1)根据半角三角形的定义,直接求出其余两个角的度数,即可;
(2)由平行四边形的性质得:∠D=108°,由翻折可知:∠EFB=72°,从而得∠EFD=18°,∠DEF=54°,进而即可得到结论;
(3)①如图2中,连接AN,易得△CMN∽△CBA,从而得=,由锐角三角函数的定义,即可sin∠CAN=,进而即可得到结论;②由题意得:△ABC是半角三角形,∠B=30°或90°时,BN取得最值,进而即可求解.
(1)∵Rt△ABC为半角三角形,∠A=90°,
∴∠B=∠C=45°,或∠B=60°,∠C=30°或∠B=30°,∠C=60°,
∴其余两个角的度数为45°,45°或30°,60°,
故答案为45°,45°或30°,60°;
(2)如图1中,∵平行四边形ABCD中,∠C=72°,
∴∠D=108°,
由翻折可知:∠EFB=∠C=72°,
∵,
∴∠EFD=18°,
∴∠DEF=180°-108°-18°=54°,
∴∠DEF=∠D,即△DEF是半角三角形;
(3)①如图2中,连接AN.
∵AB是直径,
∴∠ANB=90°,
∵∠C=∠C,∠CMN=∠B,
∴△CMN∽△CBA,
∴()2==,即=,
∵在Rt△ACN中,sin∠CAN==,
∴∠CAN=30°,
∴∠C=60°;
②∵△ABC是半角三角形,∠B=30°或90°时,BN取得最值,
∴0≤BN≤3.
科目:初中数学 来源: 题型:
【题目】每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取名学生,对每人每周用于课外阅读的平均时间(单位:)进行调查,过程如下:
收集数据:
整理数据:
课外阅读平均时间 | ||||
等级 | ||||
人数 |
分析数据:
平均数 | 中位数 | 众数 |
请根据以上提供的信息,解答下列问题:
(1)填空: ; ; ; ;
(2)已知该校学生人,若每人每周用于课外阅读的平均时间不少于为达标,请估计达标的学生数;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,EF经过对角线BD的中点O,分别交AD,BC于点E,F
(1)求证:△BOF≌△DOE;
(2)若AB=4cm,AD=5cm,当EF⊥BD时,求四边形ABFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图。
(1)这次被调查的同学共有 名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐。据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点E,在弦BC上取一点F,使AF=AE,连接AF并延长交⊙O于点D.
(1)求证:∠B=∠CAD;
(2)若CE=2,∠B=30°,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A,D两点,交AB于点E,交AC于点F
(1)求证:BC是⊙O的切线;
(2)若⊙O半径是2cm,F是弧AD的中点,求阴影部分的面积(结果保留π和根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;
(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;
(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com