精英家教网 > 初中数学 > 题目详情

【题目】如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,DAC=15°.

(1)求B,D之间的距离;

(2)求C,D之间的距离.

【答案】(1)BD之间的距离为2km;(2)C,D之间的距离km.

【解析】分析:(1)根据平行线的性质,以及方向角的定义即可求出根据等角对等边,即可证得即可求解;
(2)根据等角对等边即可证得 然后根据三角函数即可求得的长.

详解:(1)如图,由题意得,

AEBFCD

又∵

为等腰三角形,

BD之间的距离为2km.

(2)过B,交其延长线于点O

中,

中,

(km).

CD之间的距离km.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).

(1)求点B的坐标,并用含t的代数式表示OP,OQ;

(2)当t=1时,如图1,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;

(3)在(2)的条件下,矩形对角线AC,BO交于M,取OM中点G,BM中点H,求证:当t=1时四边形DGPH是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线交于CD两点,其中点Cy轴上,点D的坐标为。点Py轴右侧的抛物线上一动点,过点PPEx轴于点E,交CD于点F.

1)求抛物线的解析式;

2)若点P的横坐标为m,当m为何值时,以OCPF为顶点的四边形是平行四边形?请说明理由

3)若存在点P,使PCF=450,请直接写出相应的点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CDABDFGABGEDBC,求证∠1=∠2.以下是推理过程,请你填空:

解:∵CDABFGAB

∴∠CDB=∠FGB90° 垂直定义)

   FG   

   =∠3    

又∵DEBC 已知

∴∠   =∠3 两直线平行,内错角相等

∴∠1=∠2    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.

1)请解释图中点D的横坐标、纵坐标的实际意义;

2)求线段AB所表示的x之间的函数表达式;

3)当该产品产量为多少时,获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的表和图(如图).

组别

个人年消费金额x/元

频数(人数)

频率

A

x≤2 000

18

0.15

B

2 000<x≤4 000

a

b

C

4 000<x≤6 000

D

6 000<x≤8 000

24

0.20

E

x>8 000

12

0.10

合计

c

1.00

根据以上信息回答下列问题:

(1)a=________,b=________,c=________,并将条形统计图补充完整;

(2)在这次调查中,个人年消费金额的中位数出现在________组;

(3)若这个企业有3 000名员工,请你估计个人旅游年消费金额在6 000元以上的人数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,电子蚂蚁PQ在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度秒的速度绕正方形作逆时针运动,则它们第2019次相遇在( )

A. AB. BC. CD. D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的边长为4,点是对角线的中点,点分别在边上运动,且保持,连接.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是(

A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中, 对角线ACBD相交于点O. EF是对角线AC上的两个不同点,当EF两点满足下列条件时,四边形DEBF不一定是平行四边形( ).

A.AECFB.DEBFC.D.

查看答案和解析>>

同步练习册答案