【题目】如图,已知直线与双曲线交于、两点,且点的横坐标为4.
(1)若双曲线上一点的纵坐标为8,求的面积;
(2)过原点的另一条直线交双曲线于,两点(点在第一象限),若由点,,,为顶点组成的四边形面积为24,求点的坐标.
【答案】(1);(2)点的坐标为或.
【解析】
(1)将x=4代入一次函数解析式求出y的值,确定出A的坐标,将A坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;将C纵坐标代入反比例解析式求出横坐标,确定出C坐标,即CD与OD的长,三角形AAOC面积=三角形COD面积+梯形AEDC面积-三角形AOE面积,求出即可;
(2)设,即OM=m,PM=,分两种情况考虑:若P在A的左侧,如图所示,作PM⊥x轴,AN⊥x轴,由四边形APBQ面积为24,且为平行四边形,得到三角形AOP面积为6,根据三角形POM面积+梯形ANMP面积-三角形AON面积,列出关于x的方程,求出方程的解得到x的值,确定出此时P的坐标;若P在A的右侧,同理可得P的坐标.
(1)∵点的横坐标为4
∴把代入中,得
∴
∵点是直线与双曲线的交点
∴
∴双曲线的解析式为
如图所示,过点、分别作轴的垂线,垂足为、
∵点在双曲线上
∴当时,
∴点的坐标为
∵点、在双曲线上
∴
∴
∴
∵
∴
(2)∵反比例函数图像是关于原点的中心对称图形
∴,
∴四边形是平行四边形
∴
设点的横坐标为(且)
∴
过点、分别作轴的垂线,垂足为、
∵点、在双曲线上
∴
若,如图所示:
∵
∴
即
∴,(舍去)
∴
若,如图所示:
∵
∴
即
∴,(舍去)
∴
∴点的坐标为或.
科目:初中数学 来源: 题型:
【题目】综合与实践四边形旋转中的数学
“智慧”数学小组在课外数学活动中研究了一个问题,请帮他们解答.
任务一:如图1,在矩形ABCD中,,,E,F分别为AB,AD边的中点,四边形AEGF为矩形,连接CG.
请直接写出CG的长是______.
如图2,当矩形AEGF绕点A旋转比如顺时针旋转至点G落在边AB上时,请计算DF与CG的长,通过计算,试猜想DF与CG之间的数量关系.
当矩形AEGF绕点A旋转至如图3的位置时,中DF与CG之间的数量关系是否还成立?请说明理由.
任务二:“智慧”数学小组对图形的旋转进行了拓展研究,如图4,在ABCD中,,,,E,F分别为AB,AD边的中点,四边形AEGF为平行四边形,连接“智慧”数学小组发现DF与CG仍然存在着特定的数量关系.
如图5,当AEGF绕点A旋转比如顺时针旋转,其他条件不变时,“智慧”数学小组发现DF与CG仍然存在着这一特定的数量关系请你直接写出这个特定的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,假分数可以化为整数与真分数的和的形式.例如:.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,…这样的分式是假分式;像 ,,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如: ’
.
(1)将分式化为整式与真分式的和的形式;
(2)如果分式的值为整数,求x的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于原点O对称的△A1B1C1.
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.
(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2与 成中心对称,其对称中心的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去若点,,则点的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,中,,点是边上一点,过点作交于点
如图①,求证:;
如图②,将绕点逆时针旋转得到.连接.
①若,求的长;
②若,在图②的旋转过程中,当时,直接写出旋转角的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;
(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PE⊥CD于点E,QF⊥CD于点F.问两动点运动多长时间时△OPE与△OQF全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,海中有一小岛P,在距小岛P的海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设a,b,c是△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.
(1)试判断△ABC的形状;
(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com