【题目】已知,中,,点是边上一点,过点作交于点
如图①,求证:;
如图②,将绕点逆时针旋转得到.连接.
①若,求的长;
②若,在图②的旋转过程中,当时,直接写出旋转角的大小.
【答案】证明见解析;(2)①6,②当旋转角为或.
【解析】
(1)根据等腰三角形两底角相等,再根据平行线的性质得出,,,得出,进一步得出结论;
(2)求出,再根据旋转的性质可得,,然后利用“边角边”证明和全等,根据全等三角形对应边相等证明即可;
(3)把绕点逆时针旋转与过点与平行的直线相交于、,然后分两种情况,根据等腰梯形的性质和等腰三角形的性质分别求解即可.
证明:∵,
∴,
∵,
∴,,
∴,
∴.
解:①由旋转的性质得,,,
在和中,
,
∴,
∴;
②由可知,
所以,在绕点逆时针旋转过程中,点经过的路径(圆弧)与过点且与平行的直线相交于点、,如图,
①当点的像与点重合时,四边形是等腰梯形,
所以,,
又∵,
∴;
②当点的像与点重合时,
∵,
∴,
∵,
∴,
∴,
∴,
综上所述,当旋转角为或
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴相交于,两点,与轴交于点,为顶点.
求直线的解析式和顶点的坐标;
已知,点是直线下方的抛物线上一动点,作于点,当最大时,有一条长为的线段(点在点的左侧)在直线上移动,首尾顺次连接、、、构成四边形,请求出四边形的周长最小时点的坐标;
如图,过点作轴交直线于点,连接,点是线段上一动点,将沿直线折叠至,是否存在点使得与重叠部分的图形是直角三角形?若存在,请求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC 中,AB=AC,MN垂直平分AB分别交AB、BC于M、M,如果△ACN是等腰三角形,那么∠B的大小是______________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=4cm,BC=8cm,动点P从点A出发,以1cm/s的速度沿AB向点B运动,动点Q从点B出发,以2cm/s秒的速度沿BC向点C运动.P、Q分别从A、B同时出发,设运动时间为t秒.(如图1)
(1)用含t的代数式表示下列线段长度:
①PB=__________cm,②QB=_____cm,③CQ=_________cm.
(2)当△PBQ的面积等于3时,求t的值.
(3) (如图2),若E为边CD中点,连结EQ、AQ.当以A、B、Q为顶点的三角形与△EQC相似时,直接写出满足条件的t的所有值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与双曲线交于、两点,且点的横坐标为4.
(1)若双曲线上一点的纵坐标为8,求的面积;
(2)过原点的另一条直线交双曲线于,两点(点在第一象限),若由点,,,为顶点组成的四边形面积为24,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,在平面直角坐标系中,点O坐标原点,直线l分别交x轴、y轴于A,B两点,OA<OB,且OA、OB的长分别是一元二次方程的两根.
(1)求直线AB的函数表达式;
(2)点P是y轴上的点,点Q第一象限内的点.若以A、B、P、Q为顶点的四边形是菱形,请直接写出Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC三个顶点的坐标为:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1 ;B1, ;C1 ;
(2)△ABC的面积为 ;
(3)在y轴上画出点P,使PB+PC最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,BD交AC于E,G为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.
(1)求证:CD=CG;
(2)若AD=CG,求证:AB=AC+BH.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com