【题目】如图△ABC 的∠ABC 的外角平分线 BD 与∠ACB 的外角平分线 CE 交于 P,过 P 作 MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,则 MN=( )
A. 2B. 3C. 4D. 5
【答案】B
【解析】
过P作PF⊥AC,PG⊥BC,PH⊥AB,连接AP,依据条件可得AP平分∠BAC,再根据平行线的性质和角平分线定义得出∠MAP=∠MPA,∠NBP=∠NPB,即可得到AM=PM,NP=NB,再根据MN=MP-NP=AM-BN进行计算即可.
如图,过P作PF⊥AC,PG⊥BC,PH⊥AB,连接AP,
∵∠ABC的外角平分线BD与∠ACB的外角平分线CE交于P,
∴PF=PG=PH,
∴点P在∠BAC的平分线上,即AP平分∠BAC,
∴∠MAP=∠BAP,
∵MN∥AB,
∴∠BAP=∠MPA,
∴∠MAP=∠MPA,
∴AM=PM,
同理可得:∠NBP=∠NPB,
∴NP=NB,
∴MN=MP-NP=AM-BN=8-5=3,
故选:B.
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:
(1)轿车到达乙地后,货车距乙地多少千米?
(2)求线段CD对应的函数解析式.
(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间再与轿车相遇(结果精确到0.01).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形ABCD和矩形ABEF中,AC与DF相交于点G.
(1) 试说明DF=CE;
(2) 若AC=BF=DF,求∠ACE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).
(1)当点A′落在边BC上时,求x的值;
(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;
(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
类型 价格 | A型 | B型 |
进价(元/盏) | 40 | 65 |
标价(元/盏) | 60 | 100 |
(1)这两种台灯各购进多少盏?
(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两图是分别由五个棱长为“1”的立方块组成的两个几何体,它们的三视图中完全一致的是
A. 三视图都一致 B. 主视图 C. 俯视图 D. 左视图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM=AN.
(1)求证:Rt△ABM≌Rt△AND
(2)线段MN与线段AD相交于T,若AT=,求的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线 :y=2x+1与直线 :y=mx+4相交于点P(1,b)
(1)求b,m的值
(2)垂直于x轴的直线 x=a与直线 ,分别相交于C,D,若线段CD长为2,求a的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com