【题目】如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发时与A相距 千米.
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时.
(3)B出发后 小时与A相遇.
(4)求出A行走的路程S与时间t的函数关系式.
【答案】(1)10千米;(2)1小时(3)3小时(4)S=t+10
【解析】
试题分析:(1)从图上可看出B出发时与A相距10千米.
(2)修理的时间就是路程不变的时间是1.5﹣0.5=1小时.
(3)从图象看出3小时时,两个图象相交,所以3小时时相遇.
(4)S和t的函数关系是一次函数,设函数是为S=kt+b,过(0,10)和(3,22.5),从而可求出关系式.
解:(1)由图形可得B出发时与A相距10千米;
(2)在图中发现0.5至1.5小时,自行车没有行走,
故可得出修理所用的时间为1小时.
(3)图中两直线的交点是B与A相遇的时刻,
即出发3小时后与A相遇.
(4)设函数是为S=kt+b,且过(0,10)和(3,22.5),
则,
解得:.
故S与时间t的函数关系式为:S=t+10.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD//BC,AC=8,BD=6.
(1)求证:四边形ABCD是平行四边形;
(2)若AC⊥BD,求□ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业生产部统计了15名工人某月加工的零件数:
(1)写出这15人该月加工的零件数的平均数、中位数和众数;
(2)若生产部领导把每位工人的月加工零件数定为260件,你认为是否合理,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.
(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;
(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.
依据图中信息,得出下列结论:
(1)接受这次调查的家长人数为200人
(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°
(3)表示“无所谓”的家长人数为40人
其中正确的结论个数为( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,面积为48 cm2的正方形的四个角是面积为3 cm2的小正方形,请动手操作,将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体盒子的底面边长.
【答案】
【解析】试题分析:根据算术平方根的定义求出大正方形和小正方形的边长,再根据底边边长的表示列式计算即可得解.
试题解析:解:正方形的边长==cm,剪掉小正方形的边长=cm,所以,长方体盒子的底面边长==(cm).
答:这个长方体盒子的底面边长是cm.
点睛:本题考查了二次根式的应用,主要利用了算术平方根的定义,以及二次根式的运算.
【题型】解答题
【结束】
26
【题目】已知求(1)x2-xy+y2;(2)x3y+xy3的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,
请写出各点的坐标.
若把向上平移2个单位,再向左平移1个单位得到,写出、、的坐标,并在图中画出平移后图形.
求出三角形ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠B=60°,点P为BC边上一点,设BP=x,AP2=y(如图1),已知y是x的二次函数的一部分,其图象如图2所示,点Q(2,12)是图象上的最低点.
(1)边AB= , BC边上的高AH=;
(2)当△ABP为直角三角形时,BP的长是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com