如图,AC是⊙O的直径,弦BD交AC于点E.
(1)求证:△ADE∽△BCE;
(2)如果AD2=AE•AC,求证:CD=CB.
![]()
![]()
【考点】圆周角定理;相似三角形的判定与性质.
【专题】证明题.
【分析】(1)由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠A=∠B,又由对顶角相等,可证得:△ADE∽△BCE;
(2)由AD2=AE•AC,可得![]()
,又由∠A是公共角,可证得△ADE∽△ACD,又由AC是⊙O的直径,以求得AC⊥BD,由垂径定理即可证得CD=CB.
【解答】证明:(1)如图,∵∠A与∠B是![]()
对的圆周角,
∴∠A=∠B,
又∵∠1=∠2,
∴△ADE∽△BCE;
(2)如图,
∵AD2=AE•AC,
∴![]()
,
又∵∠A=∠A,
∴△ADE∽△ACD,
∴∠AED=∠ADC,
又∵AC是⊙O的直径,
∴∠ADC=90°,
即∠AED=90°,
∴直径AC⊥BD,
∴![]()
=![]()
,
∴CD=CB.
![]()
![]()
![]()
![]()
【点评】此题考查了圆周角定理、垂径定理一相似三角形的判定与性质.此题难度不大,注意数形结合思想的应用.
科目:初中数学 来源: 题型:
如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣
的图象经过点C.
(1)求点C的坐标;
(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com