【题目】如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
【答案】见解析
【解析】试题分析:(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;
(2)先根据已知中的两组平行线,可证四边形DEFA是,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证AEDF实菱形.
试题解析:(1)∵DE∥AC,∠ADE=∠DAF,
同理∠DAE=∠FDA,
∵AD=DA,
∴△ADE≌△DAF,
∴AE=DF;
(2)若AD平分∠BAC,四边形AEDF是菱形,
∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴∠DAF=∠FDA.
∴AF=DF.
∴平行四边形AEDF为菱形.
科目:初中数学 来源: 题型:
【题目】点A、B、C在数轴上对应的数分别为1、3、5,点P在数轴上对应的数是﹣2,点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,…,则P1P2016的长度为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:∠C=∠D,OD=OC.求证:DE=CE.
【答案】证明见解析
【解析】试题分析:利用ASA证明△OBC≌△OAD,根据全等三角形的对应边相等可得OA=OB,再由OD=OC,即可得AC=BD,根据AAS证明△ACE≌△BDE,再由全等三角形的对应边相等即可得结论.
试题解析:
在△OBC和△OAD中,
,
∴△OBC≌△OAD(ASA),
∴OA=OB,
∵OD=OC,
∴OD﹣OB=OC﹣OA,即AC=BD,
在△ACE和△BDE中,
,
∴△ACE≌△BDE(AAS),
∴DE=CE.
【题型】解答题
【结束】
27
【题目】如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连接DC,以DC为边,作等边△DCE,点B、E在CD的同侧.
(1)求∠BCE的大小;
(2)求证:BE=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。
(1)求证:OE=OF;
(2)若BC=,求AB的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 为的直径,点为上一点,若∠BAC=∠CAM,过点作直线垂直于射线AM,垂足为点D.
(1)试判断与的位置关系,并说明理由;
(2)若直线与的延长线相交于点, 的半径为3,并且.求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于A(2,1),B(-1,)两点.
(1)求m、k、b的值;
(2)连接OA、OB,计算三角形OAB的面积;
(3)结合图象直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒.
(1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标;
(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中, 于点, 于点, 为边的中点,连接、,则下列结论:①;②为等边三角形.下面判断正确是( )
A. ①正确 B. ②正确
C. ①②都正确 D. ①②都不正确
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com