精英家教网 > 初中数学 > 题目详情

【题目】已知△ABC∽△DEF,面积比为94,则△ABC与△DEF的对应边之比为( )

A. 34B. 32C. 916D. 23

【答案】B

【解析】

根据相似三角形的面积比等于相似比的平方即可求解.

解:∵△ABC∽△DEF,面积比为94

∴△ABC与△DEF的对应边之比32

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张长方形纸片与一张直角三角形纸片(∠EFG=90°)按如图所示的位置摆放,
使直角三角形纸片的一个顶点E恰好落在长方形纸片的一边AB上,已知∠BEF=21°,则
∠CMF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.

(1)求甲、乙两种门票每张各多少元?

(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点P(2,﹣3)关于原点对称的点的坐标是( )
A.(﹣2,﹣3)
B.(2,3)
C.(﹣2,3)
D.(﹣3,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验探究:
(1)动手操作:
①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=
②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=
(2)猜想证明:
如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;
(3)灵活应用:
请你直接利用以上结论,解决以下列问题:
①如图4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,求∠BEC的度数;
(4)②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9
若∠BDC=120°,∠BF3C=64°,则∠A的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.

(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED=
②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.
(2)拓展应用:
如图②,射线FE与l1 , l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若3am+2b4与﹣a5bn1的和仍是一个单项式,则m+n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为(

A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

同步练习册答案