【题目】如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个判断:①当x>0时,y>0;②当x>1时,y随x的增大而减少;③m>-1;④当a=-1时,b=3;其中,判断正确的序号是( )
A.①②B.②③C.①③D.②③④
【答案】D
【解析】
①当x>0时,y>m+1,y可以小于0;
②由题意可得:函数图像的对称轴,然后根据对称轴所在位置进行判定即可;
③由于函数图像于x轴有两个交点,根据根的判别式即可判定;
④根据二次函数图像与一元二次方程根的关系,确定a+b,即可确定b的值.
解:①当x=0时,y=m+1;则根据图像可得:当x>0时,y>m+1,y可以小于0,故①错误;
②该函数图像的对称轴为x=,则当x>1时,y随x的增大而减少,故②正确;
③由题意得-x2+2x+m+1=0的两个不相等的解,则22-4(m+1)(-1)>0,即:4m+8>0,解得:m>-2;由于:m>-2包含m>-1,故③正确;
④根据二次函数图像与一元二次方程根的关系,可得a、b为方程的两个解
则a+b=;又a=-1,则b=2-(-1)=3,故④正确;
故答案为D.
科目:初中数学 来源: 题型:
【题目】已知:二次函数y=x2-2mx-m2+4m-2的对称轴为l,抛物线与y轴交于点C,顶点为D.
(1)判断抛物线与x轴的交点情况;
(2)如图1,当m=1时,点P为第一象限内抛物线上一点,且△PCD是以PD为腰的等腰三角形,求点P的坐标;
(3)如图2,直线和抛物线交于点A、B两点,与l交于点M,且MO=MB,点Q(x0,y0)在抛物线上,当m>1时,时,求h的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂接受了20天内生产1200台AB型电子产品的总任务.已知每台AB型产品由4个A型装置和3个B型装置配套组成.工厂现有80名工人,每个工人每天能加工6个A型装置或3个B型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的A、B型装置数量正好全部配套组成AB型产品.为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行A型装置的加工,且每人每天只能加工4个A型装置.
(1)设原来每天安排x名工人生产A型装置,后来补充m名新工人,求x的值(用含m的代数式表示)
(2)请问至少需要补充多少名新工人才能在规定期内完成总任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一项工程,由甲、乙两个工程队共同完成,若乙工程队单独完成需要60天;若两个工程队合作18天后,甲工程队再单独做10天也恰好完成.
(1)甲工程队单独完成此项工程需要几天?
(2)若甲工程队每天施工费用为0.6万元,乙工程队每天施工费用为0.35万元,要使该项目总施工费用不超过22万元,则乙工程队至少施工多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BC是⊙O的直径,CE是⊙O的弦,过点E作⊙O的切线,交CB的延长线于点G,过点B作BF⊥GE于点F,交CE的延长线于点A.
(1)求证:∠ABG=2∠C;
(2)若GF=3,GB=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线经过A(-3,0),B(1,0),C(0,-3)三点,其顶点为D,对称轴是直线,与x轴交于点H.
(1)求该抛物线的解析式;
(2)若点P是该抛物线对称轴上的一个动点,求△PBC周长的最小值;
(3)如图2,若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.
①试求S与m的函数关系式;
②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.
Ⅰ的面积等于______;
Ⅱ若四边形DEFG是中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法不要求证明________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为缓解某学校大班额现状,某市决定通过新建学校来解决该问题.经测算,建设6个小学,5个中学,需费用13800万元,建设10个小学,7个中学,需花费20600万元.
(1)求建设一个小学,一个中学各需多少费用.
(2)该市共计划建设中小学80所,其中小学的建设数量不超过中学建设数量的1.5倍.设建设小学的数量为x个,建设中小学校的总费用为y万元.
①求y关于x的函数关系式;
②如何安排中小学的建设数量,才能使建设总费用最低?
(3)受国家开放二胎政策及外来务工子女就读的影响,预计在小学就读人数会有明显增加,现决定在(2)中所定的方案上增加投资以扩大小学的就读规模,若建设小学总费用不超过建设中学的总费用,则每所小学最多可增加多少费用?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中的三点A(1,0),B(-1,0),P(0,-1),将线段AB沿y轴向上平移m(m>0)个单位长度,得到线段CD,二次函数y=a(x-h)2+k的图象经过点P,C,D.
(1)当m=1时,a=______;当m=2时,a=______;
(2)猜想a与m的关系,并证明你的猜想;
(3)将线段AB沿y轴向上平移n(n>0)个单位长度,得到线段C1D1,点C1,D1分别与点A,B对应,二次函数y=2a(x-h)2+k的图象经过点P,C1,D1.
①求n与m之间的关系;
②当△COD1是直角三角形时,直接写出a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com