【题目】为缓解某学校大班额现状,某市决定通过新建学校来解决该问题.经测算,建设6个小学,5个中学,需费用13800万元,建设10个小学,7个中学,需花费20600万元.
(1)求建设一个小学,一个中学各需多少费用.
(2)该市共计划建设中小学80所,其中小学的建设数量不超过中学建设数量的1.5倍.设建设小学的数量为x个,建设中小学校的总费用为y万元.
①求y关于x的函数关系式;
②如何安排中小学的建设数量,才能使建设总费用最低?
(3)受国家开放二胎政策及外来务工子女就读的影响,预计在小学就读人数会有明显增加,现决定在(2)中所定的方案上增加投资以扩大小学的就读规模,若建设小学总费用不超过建设中学的总费用,则每所小学最多可增加多少费用?
【答案】(1)建设一个小学需800万元,一个中学需1800万元;(2)①y=﹣1000x+144000(0<x≤48且x是整数);②中小学建设数量为:48个小学,32个中学;(3)每所小学最多可增加400万元的费用.
【解析】
(1)先设建设一个小学需x万元,一个中学各需y万元,根据建设6个小学,5个中学,需费用13800万元,建设10个小学,7个中学,需花费20600万元列出方程组,求出x,y的值即可;
(2)①根据建设小学的总费用+建设中学的总费用=y,列式化简可得,根据小学的建设数量不超过中学建设数量的1.5倍列不等式可得x的取值;
②根据x的取值可计算建设总费用最低时,中小学建设的数量;
(3)根据建设小学总费用不超过建设中学的总费用,列不等式可得结论.
(1)设建设一个小学需x万元,一个中学各需y万元,
根据题意得:,解得:,
答:建设一个小学需800万元,一个中学各需1800万元,
(2)①∵建设小学的数量为x个,
∴建设中学的数量是(80﹣x)个,
x≤1.5(80﹣x),
x≤48,
由题意得:y=800x+1800(80﹣x)=﹣1000x+144000(0<x≤48且x是整数);
②∵﹣1000<0,
∴y随x的增大而减小,
∴当x=48时,y有最小值,
此时中小学建设数量为:48个小学,32个中学;
(3)设每所小学可增加a万元的费用,
由题意得:48(800+a)≤1800×32,
a≤400,
则每所小学最多可增加400万元的费用.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=,∠B=45°,∠C=60°.
(1)求BC边上的高线长.
(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.
①如图2,当点P落在BC上时,求∠AEP的度数.
②如图3,连结AP,当PF⊥AC时,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个判断:①当x>0时,y>0;②当x>1时,y随x的增大而减少;③m>-1;④当a=-1时,b=3;其中,判断正确的序号是( )
A.①②B.②③C.①③D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:D是BC的中点;
(2)若BA⊥AC,试判断四边形AFBD的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,如图1,AB是⊙O的弦,点F是的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.
(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.
(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.
(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形中,,点是对角线上一动点,将线段绕点顺时针旋转120°到,连接,连接并延长,分别交于点.
(1)求证:;
(2)已知,若的最小值为,求菱形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线,使得.
作法:如图,
①任意取一点K,使点K和点P在直线l的两旁;
②以P为圆心,长为半径画弧,交l于点,连接;
③分别以点为圆心,以长为半径画弧,两弧相交于点Q(点Q和点A在直线的两旁);
④作直线.
所以直线就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接,
______,______,
四边形是平行四边形(__________)(填推理依据).
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于点C,连接AD,OC.若△ABO的周长为,AD=2,则△ACO的面积为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息.
(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价.
(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?
“读书节”活动计划书 | ||
书本类别 | A类 | B类 |
进价(单位:元) | 18 | 12 |
备注 | 1.用不超过16800元购进A、B两类图书共1000本 2.A类图书不少于600本 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com