【题目】如图,⊙O中,AB=AC,∠ACB=75°,BC=1,则阴影部分的面积是( )
A.1+πB.πC.πD.1+π
【答案】B
【解析】
连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长1,利用三角形和扇形的面积公式即可求解;
解:作OD⊥BC,则BD=CD,连接OA,OB,OC,
∴OD是BC的垂直平分线 ∴,
∴AB=AC, ∴A在BC的垂直平分线上,
∴A、O、D共线,
∵∠ACB=75°,AB=AC, ∴∠ABC=∠ACB=75°,
∴∠BAC=30°, ∴∠BOC=60°,
∵OB=OC, ∴△BOC是等边三角形,
∴OA=OB=OC=BC=1,
∵AD⊥BC,AB=AC, ∴BD=CD,
∴OD==,
∴AD=,
∴,,
∴阴影=+扇形BOC-=,
故选:B.
科目:初中数学 来源: 题型:
【题目】甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.
(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;
(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C(﹣1,4),请按下列要求画图:
(1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1;
(2)画出与△ABC关于原点O成中心对称的△A2B2C2,并直接写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三个顶点的坐标分别为,,
(1)请画出向下平移5个单位长度后得到的;
(2)请画出关于轴对称的;
(3)若坐标轴上存在点,使得是以为底边的等腰三角形,请直接写出满足条件的点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在2019年端午节前夕,某商场投入13800元资金购进甲、乙两种商品共500件,两种商品的成本价和销售价如下表所示:
商品 单价(元/件) | 成本价 | 销售价 |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)该商场购进两种商品各多少件?
(2)这批商品全部销售完后,该商场共获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线.作BM=AB并与AP交于点 M,延长MB交AC于点E,交⊙O于点D,连接AD、BC.
(1)求证:AB=BE;
(2)若BE=3,OC=,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=4,以AB为直径的⊙O交BC于点D,交AC于点E,点P是AB的延长线上一点,且∠PDB=∠A,连接DE,OE.
(1)求证:PD是⊙O的切线.
(2)填空:①当∠P的度数为______时,四边形OBDE是菱形;
②当∠BAC=45°时,△CDE的面积为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com