精英家教网 > 初中数学 > 题目详情
y=ax2+b与y=x+2交于A、B两点,A点横坐标为-1,B点横坐标为2,求二次函数解析式.
考点:待定系数法求二次函数解析式
专题:计算题
分析:把A与B的横坐标代入y=x+2中求出相应的纵坐标,确定出A与B坐标,代入二次函数解析式求出a与b的值,即可确定出二次函数解析式.
解答:解:把x=-1代入y=x+2得:y=-1+2=1,
把x=2代入y=x+2得:y=2+2=4,
即A(-1,1),B(2,4),
把A与B坐标代入y=ax2+b,得:
a+b=1
4a+b=4

解得:a=1,b=0,
则二次函数解析式为y=x2
点评:此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

古希腊毕达哥拉斯学派认为“万物皆教”,意思是数是宇宙万物的要素,他们常把数描绘成沙滩上的点子或小石子,根据点子或小石子的排列的形状把整数进行分类,例如:1,3,6,10…这些数叫三角形数(如图),则下列数55、364、1830中是三角形数有
 

查看答案和解析>>

科目:初中数学 来源: 题型:

化简求值:x(x-4)(x+4)-(x+3)(x2-6x+9)+5x3y2÷x2y2,其中x=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:

小聪用两根等长的铁丝分别围成了等边三角形和正方形,已知正方形的边长比三角形的边长少5cm,则铁丝的长度为(  )
A、60cmB、40cm
C、30cmD、20cm

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:(3-x)2+x2=9.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,平面直角坐标系中,直线ABy=-x-
2
分别交x轴,y轴于A、B两点,一动圆⊙C与x轴相切于点M.
(1)求∠OAB的度数;
(2)如图,当⊙C得半径为2时,且⊙C与直线AB相切于点H,求点M的坐标;
(3)当⊙C的半径为2时,且⊙C在x轴下方与直线AB相切,直接写出点M的坐标(用含r的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

王叔想用一笔钱买年利率为5%的3年期国库券,如果他想三年后得到的本息为34500元,现在应购买这种国库券多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下面的变形规律:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,…
解答下面的问题:
(1)若n为正整数,请你猜想
1
n(n+1)
=
 

(2)证明你猜想的结论;
(3)计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2014×2015
+
1
2015×2016

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是正方形ABCD边AB上的一点(不与A、B重合),连接PD,并将线段PD绕点P顺时针旋转得到线段PE,PE交边BC于点F,连接BE、DF,∠CBE=45°,求证:DP⊥PE.

查看答案和解析>>

同步练习册答案