精英家教网 > 初中数学 > 题目详情

【题目】如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

【答案】(1)y=﹣x2+2x+3;(2)S四边形ACFD= 4;Q点坐标为(1,4)或()或().

【解析】

此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标。

(1)由题意可得,解得

∴抛物线解析式为y=﹣x2+2x+3;

(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴F(1,4),

∵C(0,3),D(2,3),

∴CD=2,且CD∥x轴,

∵A(﹣1,0),

∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;

②∵点P在线段AB上,

∴∠DAQ不可能为直角,

∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,

i.当∠ADQ=90°时,则DQ⊥AD,

∵A(﹣1,0),D(2,3),

∴直线AD解析式为y=x+1,

∴可设直线DQ解析式为y=﹣x+b′,

D(2,3)代入可求得b′=5,

∴直线DQ解析式为y=﹣x+5,

联立直线DQ和抛物线解析式可得,解得

∴Q(1,4);

ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),

设直线AQ的解析式为y=k1x+b1

A、Q坐标代入可得,解得k1=﹣(t﹣3),

设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,

∵AQ⊥DQ,

∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=

t=时,﹣t2+2t+3=

t=时,﹣t2+2t+3=

∴Q点坐标为()或();

综上可知Q点坐标为(1,4)或()或().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,∠ACB90°OC2BOAC6,点B的坐标为(10),抛物线y=﹣x2+bx+c经过AB两点.

1)求点A的坐标;

2)求抛物线的解析式;

3)点P是直线AB上方抛物线上的一点,过点PPD垂直x轴于点D,交线段AB于点E,使PEDE

①求点P的坐标;

②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,把矩形沿对角线所在直线折叠,使点落在点处,于点,连接

(1)求证:

(2)求证:是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程 有实数根.

(1)求的取值范围;

(2)若 两个实数根分别为 ,且,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的ALMN,若中间空白部分四边形OPQR恰好是正方形,且ALMN的面积为50,则正方形EFGH的面积为(  )

A. 24 B. 25 C. 26 D. 27

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小西“过直线外一点作这条直线的垂线”的尺规作图过程.

已知:直线l及直线l外一点P.

求作:直线PQ,使得PQl.

做法:如图,

①在直线l的异侧取一点K,以点P为圆心,PK长为半径画弧,交直线l于点AB

②分别以点AB为圆心,大于AB的同样长为半径画弧,两弧交于点Q(P点不重合);

③作直线PQ,则直线PQ就是所求作的直线.

根据小西设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵PA= QA= ,

PQl( )(填推理的依据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(1,2),B(3,2),连接AB. 若对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,则称点P是线段AB的“临近点”.

(1)在点C(0,2),D(2,),E(4,1)中,线段AB的“临近点”是__________;

(2)若点M(mn)在直线上,且是线段AB的“临近点”,求m的取值范围;

(3)若直线上存在线段AB的“临近点”,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】地铁10号线某站点出口横截面平面图如图所示,电梯的两端分别距顶部9.9米和2.4米,在距电梯起点端6米的处,用1.5米的测角仪测得电梯终端处的仰角为14°,求电梯的坡度与长度.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如下所示,下列5个结论:①(的实数),其中正确的结论有几个?

A. ①②③ B. ②③④ C. ②③⑤ D. ③④⑤

查看答案和解析>>

同步练习册答案