精英家教网 > 初中数学 > 题目详情

【题目】地铁10号线某站点出口横截面平面图如图所示,电梯的两端分别距顶部9.9米和2.4米,在距电梯起点端6米的处,用1.5米的测角仪测得电梯终端处的仰角为14°,求电梯的坡度与长度.(参考数据:

【答案】tanBACAB19.5.

【解析】

如图所示,延长PA,过B点作BCPA,垂足为C,过Q点作QDPC,过A点作EAPCEAQD相交于F,根据EFBD证得△QEF∽△QBD,根据相似比求得QD的长,进一步得到AC的长,最后求出AB的长和坡度.

如图所示,延长PA,过B点作BCPA,垂足为C,过Q点作QDPC,过A点作EAPCEAQD相交于F.

依题意易知,BC7.5BD6

EFAPtan14°=6×0.251.5

EFBD,∴△QEF∽△QBD

,∴QD24

ACQDPA18

AB米,

坡度为tanBAC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点Py轴的平行线,交x轴于点A,过点Px轴的平行线,交y轴于点B,若点Ax轴上对应的实数为a,点By轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.

(1)求证:CM2=MN.MA;

(2)若∠P=30°,PC=2,求CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系

(1)求y与x之间的函数关系式;

(2)求水流喷出的最大高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛BC点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)(

A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO 的直径,点DO 上(点D不与A,B重合),直线AD交过点B的切线于点C,过点DO 的切线DEBC于点E.

(1)求证:BE=CE;

(2)若DE平行AB,求sin∠ACO 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于O中,AB=C=60°

(1)求⊙O的半径;

(2) 若∠CAB=45°,点PC点出发,沿 CA 向点A滑动,滑动多长距离时△PAB会是等边三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ABC = 90°,BC = 1,AC =

1以点B为旋转中心,将ABC沿逆时针方向旋转90°得到ABC′,请画出变换后的图形;

2求点A和点A′之间的距离

查看答案和解析>>

同步练习册答案