精英家教网 > 初中数学 > 题目详情

【题目】如图,ABO 的直径,点DO 上(点D不与A,B重合),直线AD交过点B的切线于点C,过点DO 的切线DEBC于点E.

(1)求证:BE=CE;

(2)若DE平行AB,求sin∠ACO 的值.

【答案】(1)证明见解析;(2)sinACO=.

【解析】

1)证明:连接OD,如图,利用切线长定理得到EB=ED,利用切线的性质得ODDEABCB,再根据等角的余角相等得到∠CDE=ACB,则EC=ED,从而得到BE=CE

2)作OHADH,如图,设的半径为r,先证明四边形OBED为正方形得DE=CE=r,再利用△AOD和△CDE都为等腰直角三角形得到,接着根据勾股定理计算出,然后根据正弦的定义求解.

1)证明:连接,如图,

的切线,

2)解:作,如图,设的半径为

四边形为矩形,

四边形为正方形,

易得都为等腰直角三角形,

中,

中,

的值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,把矩形沿对角线所在直线折叠,使点落在点处,于点,连接

(1)求证:

(2)求证:是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(1,2),B(3,2),连接AB. 若对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,则称点P是线段AB的“临近点”.

(1)在点C(0,2),D(2,),E(4,1)中,线段AB的“临近点”是__________;

(2)若点M(mn)在直线上,且是线段AB的“临近点”,求m的取值范围;

(3)若直线上存在线段AB的“临近点”,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】地铁10号线某站点出口横截面平面图如图所示,电梯的两端分别距顶部9.9米和2.4米,在距电梯起点端6米的处,用1.5米的测角仪测得电梯终端处的仰角为14°,求电梯的坡度与长度.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于点O,则AB=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,点F是 BC的中点,DF的延长线与AB的延长线相交于点E,DE与AC相交于点O,若,则( )

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.

(1) 如图1,当点D在线段BC上时:

①求证:△AEB≌△ADC;②求证:四边形BCGE是平行四边形;

(2)如图2,当点D在BC的延长线上,且CD=BC时,试判断四边形BCGE是什么特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如下所示,下列5个结论:①(的实数),其中正确的结论有几个?

A. ①②③ B. ②③④ C. ②③⑤ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,D是边BC的中点.

1如图1,求证:△ABD和△ACD的面积相等;

如图2,延长ADE,使DE=AD,连结CE,求证:AB=EC

2)当∠BAC=90°时,可以结合利用以上各题的结论,解决下列问题:

求证:ADBC(即:直角三角形斜边上的中线等于斜边的一半)

已知BC=4,将△ABD沿AD所在直线翻折,得到△ADB',若△ADB'与△ABC重合部分的面积等于△ABC面积的,请画出图形(草图)并求出AC的长度.

查看答案和解析>>

同步练习册答案