【题目】如图,在正方形中,点的坐标是,则点的坐标是( )
A.B.C.D.
【答案】A
【解析】
作CD⊥x轴于D,作AE⊥x轴于E,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3)即可.
解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,
则∠AEO=∠ODC =90°,
∴∠OAE+∠AOE=90°,
∵四边形OABC是正方形,
∴OA=CO,∠AOC=90°,
∴∠AOE+∠COD=90°,
∴∠OAE=∠COD,
在△AOE和△OCD中,
,
∴△AOE≌△OCD(AAS),
∴AE=OD,OE=CD,
∵点A的坐标是(-3,1),
∴OE=3,AE=1,
∴OD=1,CD=3,
∴C(1,3),故选:A.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在轴的正半轴上,直线AC交轴于点M,AB边交轴于点H,连接BM.
(1)求菱形ABCO的边长; (2)求直线AC的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点表示的数为,点表示的数为,是数轴上一点,且,动点从出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.
(1)直接写出数轴上点表示的数,并用含的代数式表示线段的长度;
(2)设是的中点,是的中点.点在运动过程中,线段的长度是否发生变化?若变化,请说出理由;若不变,求线段的长度.
(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,动点从点出发,以每秒个单位长度沿数轴向左匀速运动,若三点同时出发,当点追上点后立即返回向点运动,遇到点后则停止运动.求点从开始运动到停止运动,行驶的路程是多少个单位长度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点D在双曲线y= (x大于零) 的图像上,以D为圆心的圆D与y轴相切于点C (0,4),与x轴交于AB两点.
(1)求点D的坐标;
(2)求点A和点B的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】养牛场的李大叔分三次购进若干头大牛和小牛.其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如下表:
(1)李大叔以折扣价购买大牛和小牛是第 次;是打 折.
(2)用解方程(组)的方法求大牛和小牛的原价.
大牛(头) | 小牛(头) | 总价(元) | |
第一次 | 4 | 3 | 9900 |
第二次 | 2 | 6 | 9000 |
第三次 | 6 | 9 | 13230 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):
根据统计表中的信息解答下列问题:
(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:
(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).
(1)填空:m的值为 ;
(2)求S关于x的函数关系式,并写出x的取值范围;
(3)请直接写出△PCQ为等腰三角形时x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com