精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料:

(材料)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于RtBAERtBFE的面积之和,根据图形我们就能证明勾股定理: .

(请回答)如图是任意符合条件的两个全等的RtBEARtACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?

【答案】详见解析.

【解析】

根据ABCRtACD的面积之和=RtABDBCD的面积之和求解即可.

此图也可以看成RtBEA绕其直角顶点顺时针旋转90°,再向下平移得到.一方面,四边形ABCD的面积等于△ABCRtACD的面积之和,另一方面,四边形ABCD的面积等于RtABD和△BCD的面积之和,

所以:

即:

整理:

所以:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,连接CF,则下列结论:①BF=AC; ②∠FCD=45°; ③若BF=2EC,则△FDC周长等于AB的长;其中正确的有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )

A.
B.4
C.
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线AB与x轴交于点A,与y轴交于点C(0,2),且与反比例函数y=﹣ 的图象在第二象限内交于点B,过点B作BD⊥x轴于点D,OD=2.
(1)求直线AB的解析式;
(2)若点P是线段BD上一点,且△PBC的面积等于3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,PA与小半圆M交于点C,过点C作CD⊥OP于点D.
(1)求证:CD是小半圆M的切线;
(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y. ①求y与x之间的函数关系式,并写出自变量x的取值范围;
②当y=3时,求P,M两点之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:
(1)该校共有名学生;
(2)在图①中,“三等奖”所对应扇形的圆心角度数是
(3)将图②补充完整;
(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一、阅读理解

在△ABC中,BC=a,CA=b,AB=c;

(1)若∠C为直角,则a2+b2=c2

(2)若∠C为锐角,则a2+b2c2的关系为:a2+b2>c2

(3)若∠C为钝角,试推导a2+b2c2的关系.

二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐徐州号高铁A复兴号高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.
(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案