精英家教网 > 初中数学 > 题目详情

【题目】如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为(
A.6
B.9
C.10
D.12

【答案】D
【解析】解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,
∵AB∥x轴,
∴AF⊥y轴,
∴四边形AFOD是矩形,四边形OEBF是矩形,
∴AF=OD,BF=OE,
∴AB=DE,
∵点A在双曲线y= 上,
∴S矩形AFOD=4,
同理S矩形OEBF=k,
∵AB∥OD,
= =
∴AB=2OD,
∴DE=2OD,
∴S矩形OEBF=3S矩形AFOD=12,
∴k=12.
故选D.
过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF是矩形,得出S矩形AFOD=4,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1=1000毫克,那么0.000037毫克可用科学记数法表示为

A. 3.7×10﹣5 B. 3.7×10﹣6 C. 37×10﹣7 D. 3.7×10﹣8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线ABCD被直线AC所截,ABCDE是平面内任意一点(点E不在直线ABCDAC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是(

A. ①②③ B. ①②④C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如下图,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】龟兔赛跑的故事同学们都非常熟悉图中的线段OD和折线OABC表示龟兔赛跑时路程与时间的关系请你根据图中给出的信息解决下列问题

(1)填空:折线OABC表示赛跑过程中 的路程与时间的关系线段OD表示赛跑过程中 的路程与时间的关系赛跑的全程是

(2)兔子在起初每分钟跑 乌龟每分钟爬

(3)乌龟用了 分钟追上了正在睡觉的兔子

(4)兔子醒来以48千米/时的速度跑向终点结果还是比乌龟晚到了05分钟请你算算兔子中间停下睡觉用了多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,CAB=90°.试求:

(1)AD的长;

(2)ABE的面积;

(3)ACE和△ABE的周长的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正确的是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2﹣2x+m的图象与x轴的一个交点的坐标是(﹣1,0),则图象与x轴的另一个交点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′

(1)补全△A′B′C′,利用网格点和直尺画图;

(2)图中ACA1C1的关系是:______

(3)画出△ABCAB边上的中线CE

(4)平移过程中,线段AC扫过的面积是_________

查看答案和解析>>

同步练习册答案