【题目】如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,连接DB,BE,EF,FD.
(1)求证:四边形DBEF是矩形;
(2)如果∠A=60°,DF的长为,求菱形ABCD的面积.
【答案】(1)见解析;(2)8.
【解析】
(1)根据菱形的性质结合题意,得出CE=CD=CF=CB,再根据矩形的判定证明即可.
(2)连接AC交BD于点O,已知四边形ABCD是菱形,可得OC⊥BD,OB=OD,求得OC的长,已知∠A=60°,可知∠DCO=30°,在Rt△DOC中,根据30°角的正切值可求得OD长,进而求出菱形ABCD的面积.
(1)∵CE=CD,CF=CB
∴四边形DBEF是平行四边形
∵四边形ABCD是菱形
∴CD=CB
∴CE=CF
∴BF=DE
∴四边形DBEF是矩形
(2)连接AC交BD于点O
∵四边形ABCD是菱形
∴OC⊥BD,OB=OD
∵四边形DBEF是矩形
∴BC=CF
∴OC=DF=
∵∠A=60°
∴∠DCO=∠OCB=∠DCB=∠A=×60°=30°
在Rt△DOC中,
∴OD=2
S菱形ABCD=
故答案为:
科目:初中数学 来源: 题型:
【题目】如图,点C在⊙O上,联结CO并延长交弦AB于点D, ,联结AC、OB,若CD=40,AC=20.
(1)求弦AB的长;
(2)求sin∠ABO的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,对于任意两点,,若点满足,,那么称点是点,的融合点.
例如:,,当点满是,时,则点是点,的融合点,
(1)已知点,,,请说明其中一个点是另外两个点的融合点.
(2)如图,点,点是直线上任意一点,点是点,的融合点.
①试确定与的关系式.
②若直线交轴于点,当为直角三角形时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:
(1)AC⊥BD;
(2)四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF=∠BCD;(2)EF=CF;(3)S△BEC= 2S△CEF;(4)∠DFE=3∠AEF;其中正确的结论是( )
A.(1)(2)B.(1)(2)(4)C.(2)(3)(4)D.(1)(3)(4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校提倡练字,小冬和小红一起去文具店买钢笔和字帖,小冬在文具店买1支钢笔和3本字帖共花了38元,小红买了2支钢笔和4本字帖共花了64元.
(1)每支钢笔与每本字帖分别多少元?
(2)帅帅在六一节当天去买,正巧碰到文具店搞促销,促销方案有两种形式:
①所购商品均打九折
②买一支钢笔赠送一本字帖
帅帅要买5支钢笔和15本字帖,他有三种选择方案:
(Ⅰ)一次买5支钢笔和15本字帖,然后按九折付费;
(Ⅱ)一次买5支钢笔和10本字帖,文具店再赠送5本字帖;
(Ⅲ)分两次购买,第一次买5支钢笔,文具店会赠送5本字帖,第二次再去买10本字帖,可以按九折付费;问帅帅最少要付多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为3,OP=1,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.
(1)一天中制衣所获利润P是多少(用含x的式子表示);
(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.
(3)一天当中安排多少名工人制衣时,所获利润为11806元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知三个顶点的坐标分别为,,,
(1)若将△ABC 向右平移三个单位长度得到△A1B1C1,则点 A1 的坐标为________
(2)若△ABC 与△A2B2C2 关于原点 O 成中心对称,则点 A2 的坐标________;
(3)画出△ABC 绕原点 O 顺时针旋转 90°后的对应图形△A3B3C3,并写出 A3 的坐标_____
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com