【题目】如图,已知BD是矩形ABCD的对角线.
(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).
(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.
【答案】(1)见解析;(2)四边形BEDF为菱形.见解析
【解析】
试题分析:(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;
(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.
解:(1)如图所示,EF为所求直线;
(2)四边形BEDF为菱形,理由为:
证明:∵EF垂直平分BD,
∴BE=DE,∠DEF=∠BEF,
∵AD∥BC,
∴∠DEF=∠BFE,
∴∠BEF=∠BFE,
∴BE=BF,
∵BF=DF,
∴BE=ED=DF=BF,
∴四边形BEDF为菱形.
科目:初中数学 来源: 题型:
【题目】阅读下列材料并解答问题:
我们知道的几何意义是在数轴上数对应的点与原点的距离: ,也就是说, 表示在数轴上数与数0对应点之间的距离;
这个结论可以推广为表示在数轴上数和数对应的点之间的距离;
例1解方程,容易看出,在数轴上与原点距离为2的点对应的数为,即该方程的解为.
例2解不等式,如图,在数轴上找出的解,即到1的距离为2的点对应的数为,3,则的解集为或.
例3解方程由绝对值的几何意义知,该方程表示求在数轴上与1和的距离之和为5的对应的的值.在数轴上,1和的距离为3,满足方程的对应的点在1的右边或的左边,若对应的点在1的右边,由下图可以看出;同理,若对应的点在的左边,可得,故原方程的解是或.
回答问题:(只需直接写出答案)
①解方程
②解不等式
③解方程
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+ax﹣1=0的根的情况是( )
A. 没有实数根 B. 只有一个实数根
C. 有两个相等的实数根 D. 有两个不相等的实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,AB是⊙O的一条弦,点C是优弧上一点.
(1)若∠ACB=45°,点P是⊙O上一点(不与A、B重合),则∠APB= ;
(2)如图②,若点P是弦AB与所围成的弓形区域(不含弦AB与)内一点.求证:∠APB>∠ACB;
(3)请在图③中直接用阴影部分表示出在弦AB与所围成的弓形区域内满足∠ACB<∠APB<2∠ACB的点P所在的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com