精英家教网 > 初中数学 > 题目详情
5.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB.点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.
(1)若∠AEF=20°,∠ADE=50°,AC=2,求AB的长度;
(2)求证:AE=AF+BC;
(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明.

分析 (1)在等腰直角三角形DEF中,∠DEF=90°,求得∠1=20°,根据余角的定义得到∠2=∠DEF-∠1=70°,根据三角形的内角和得到∠3=60°,∠4=30°根据三角函数的定义得到cos∠4=$\frac{AC}{AB}$,于是得到结论;
(2)如图1,过D作DM⊥AE于D,在△DEM中,由余角的定义得到∠2+∠5=90°,由于∠2+∠1=90°,推出∠1=∠5证得△DEM≌△EFA,根据全等三角形的性质得到AF=EM,根据三角形的内角和和余角的定义得到∠3=∠B,推出△DAM≌△ABC,根据全等三角形的性质得到BC=AM即可得到结论;
(3)如图2,过D作DM⊥AE交AE的延长线于M根据余角的定义和三角形的内角和得到∠2=∠B,证得△ADM≌△BAC,由全等三角形的性质得到BC=AM,由于EF=DE,∠DEF=90°,推出∠4=∠5,证得△MED≌△AFE,根据全等三角形的性质得到ME=AF,即可得到结论.

解答 解:(1)在等腰直角三角形DEF中,∠DEF=90°,
∵∠1=20°,
∴∠2=∠DEF-∠1=70°,
∵∠EDA+∠2+∠3=180°,
∴∠3=60°,
∵EA⊥AB,
∴∠EAB=90°,
∵∠3+∠EAB+∠A=180°,
∴∠4=30°,
∵∠C=90°,
∴cos∠4=$\frac{AC}{AB}$,
∴AB=$\frac{AC}{cos∠4}$=$\frac{2}{\frac{\sqrt{3}}{2}}$=$\frac{4\sqrt{3}}{3}$;

(2)如图1,过D作DM⊥AE于D,在△DEM中,∠2+∠5=90°,
∵∠2+∠1=90°,
∴∠1=∠5,
∵DE=FE,
在△DEM与△EFA中,
$\left\{\begin{array}{l}{∠DME=∠EAF}\\{∠5=∠1}\\{DE=EF}\end{array}\right.$,
∴△DEM≌△EFA,
∴AF=EM,
∵∠4+∠B=90°,
∵∠3+∠EAB+∠4=180°,
∴∠3+∠4=90°,
∴∠3=∠B,
在△DAM与△ABC中,
$\left\{\begin{array}{l}{∠3=∠B}\\{∠DMA=∠C}\\{AD=AB}\end{array}\right.$,
∴△DAM≌△ABC,
∴BC=AM,
∴AE=EM+AM=AF+BC;

(3)如图2,过D作DM⊥AE交AE的延长线于M,
∵∠C=90°,
∴∠1+∠B=90°,
∵∠2+∠MAB+∠1=180°,∠MAB=90°,
∴∠2+∠1=90°,∠2=∠B,
在△ADM与△BAC中,
$\left\{\begin{array}{l}{∠M=∠C}\\{∠2=∠B}\\{AD=AB}\end{array}\right.$,
∴△ADM≌△BAC,
∴BC=AM,
∵EF=DE,∠DEF=90°,
∵∠3+∠DEF+∠4=180°,
∴∠3+∠4=90°,
∵∠3+∠5=90°,
∴∠4=∠5,
在△MED与△AFE中,
$\left\{\begin{array}{l}{∠M=∠EAF}\\{∠5=∠4}\\{DE=EF}\end{array}\right.$,
∴△MED≌△AFE,
∴ME=AF,
∴AE+AF=AE+ME=AM=BC,
即AE+AF=BC.

点评 本题考查了全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造全等三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.解方程:$\sqrt{2}$x2-$\sqrt{6}$x-$\sqrt{5}$x+$\sqrt{15}$=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.居民李大爷家最近购买了一套经济适用房,其客厅有16平方米,他打算用地板砖铺设地面,装修人员算了一下,用25块某地正方形的地板砖正好铺满客厅,请你计算一下这种正方形地板砖的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知2015(x+y)2与$\frac{|x-y-2|}{2016}$的值互为相反数,求:
(1)x,y的值;
(2)x2015+y2016的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程:$\frac{6}{(x+1)(x-2)}$-$\frac{2}{x-2}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.
(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?
(3)商店的营销部结合上述情况,提出了A、B两种营销方案:
方案A:为了让利学生,该计算器的销售利润不超过进价的24%;
方案B:为了满足市场需要,每天的销售量不少于120件.
请比较哪种方案的最大利润更高,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,抛物线y=ax2+bx-5与x轴相交于A(1,0),B(5,0),与y轴相交于点C,对称轴与x轴相交于点M.P是抛物线上一个动点(点P、M、C不在同一条直线上),分别过点A、B作AD⊥CP,BE⊥CP,垂足分别为点D、E,连接MD、ME.

(1)求抛物线的解析式;
(2)若点P在第一象限内,使S△PAB=S△PAC,求点P的坐标;
(3)点P在运动过程中,△MDE能否为等腰直角三角形?若能,求出此时点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列分式从左至右的变形正确的是(  )
A.$\frac{-a}{2b}=\frac{a}{-2b}$B.$\frac{1}{n}=\frac{m+1}{m+n}$C.$\frac{{y}^{2}+y}{xy}=\frac{y+1}{xy}$D.$\frac{a}{b}=\frac{a{c}^{2}}{b{c}^{2}}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.某商场举办促销活动,促销的方法是将原价x元的衣服以($\frac{4}{5}$x-10)元出售,则下列说法中,能正确反映该商场的促销方法的是(  )
A.原价打8折后再减10元B.原价减10元后再打8折
C.原价减10元后再打2折D.原价打2折后再减10元

查看答案和解析>>

同步练习册答案