分析 过B作BE∥AC与AD的延长线相交于点E,利用全等三角形的判定和性质以及矩形的性质进行证明即可.
解答 证明:过B作BE∥AC与AD的延长线相交于点E,连接CE,如图:![]()
∵BE∥AC,
∴∠DBE=∠DCA,
在△BDE与△CDA中,
$\left\{\begin{array}{l}{∠DBE=∠DCA}\\{BD=DC}\\{∠BDE=∠ADC}\end{array}\right.$,
∴△BDE≌△CDA(ASA),
∴AD=DE,
∵BD=DC,
∴四边形ABEC是平行四边形,
∵∠BAC=90°,
∴平行四边形ABEC是矩形,
∴BC=AE,
∴AD=BD=DC=DE.
点评 此题考查全等三角形的判定和性质,关键是利用全等三角形的判定和性质以及矩形的性质进行证明.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com