精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.

(1)求证:四边形OCAD是平行四边形;

(2)填空:①当∠B= 时,四边形OCAD是菱形;

②当∠B= 时,AD与相切.

【答案】(1)证明见解析;(2)① 30°,② 45°

【解析】试题分析:1)根据已知条件求得∠OAC=OCAAOD=ADO然后根据三角形内角和定理得出∠AOC=OAD,从而证得OCAD即可证得结论;
2①若四边形OCAD是菱形,则OC=AC从而证得OC=OA=AC得出∠即可求得
AD相切,根据切线的性质得出根据ADOC内错角相等得出从而求得

试题解析:(方法不唯一)

(1)OA=OCAD=OC

OA=AD

∴∠OAC=OCAAOD=ADO

ODAC

∴∠OAC=AOD

∴∠OAC=OCA=AOD=ADO

∴∠AOC=OAD

OCAD

∴四边形OCAD是平行四边形;

(2)①∵四边形OCAD是菱形,

OC=AC

又∵OC=OA

OC=OA=AC

故答案为:

②∵AD相切,

ADOC

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ADBCABAC,点EBC的中点,AEBD交于点F,且FAE的中点.

(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC4AB5,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点0为直线AB上一点,∠AOC=50,OD平分∠AOC,∠DOE=90

(1)请你数一数,图中有多少个小于平角的角:

(2)求出∠BOD的度数;

(3)试判断OE是否平分∠BOC,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:∠MON30°,点A1A2A3在射线ON上,点B1B2B3在射线OM上,A1B1A2A2B2A3A3B3A4均为等边三角形,若OA11,则A7B7A8的边长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在3月份举行读书节活动,鼓励学生进行有益的课外阅读,张老师为了了解该校学生课外阅读的情况,设计了“你最喜欢的课外读物类型”的调查问卷,包括“名著”“科幻”“历史”“童话”四类,在学校随机抽取了部分学生进行调查,被抽取的学生只能在四种类型中选择其中一类,最后将调查结果绘制成如下两幅尚不完整的统计图.

请你根据以上信息解答下列问题:

(1)本次调查中,张老师一共调查了 名学生;

(2)求本次调查中选择“历史”类的女生人数和“童话”类的男生人数,并将条形统计图补充完整;

(3)扇形图中“童话”类对应的圆心角度数为 .

(4)如果该校共有学生360名,请估算该校最喜欢“名著”类和“历史”类的学生总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购. 经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.

(1)求甲、乙两种型号设备的价格;

(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;

(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2bxc(a≠0)的图象如图所示,根据图象解答下列问题.

(1)写出方程ax2bxc0的两个根;

(2)写出不等式ax2bxc0的解集;

(3)写出yx的增大而减小的自变量x的取值范围;

(4)若方程ax2bxck有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),公路上有A、B、C三个车站,一辆汽车从A站以速度v1匀速驶向B站,到达B站后不停留,以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图(2)所示.

(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;

(2)求出v2的值;

(3)若汽车在某一段路程内刚好用50分钟行驶了90千米,求这段路程开始时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠C=90°,AC=BC=,将ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接CB,则CB的长为(  )

A. B. C. D. 1

查看答案和解析>>

同步练习册答案