精英家教网 > 初中数学 > 题目详情

【题目】如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.

(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;
(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.

【答案】
(1)

解:方法一:

∵对称轴为直线x=2,

∴设抛物线解析式为y=a(x﹣2)2+k.

将A(﹣1,0),C(0,5)代入得:

,解得

∴y=﹣(x﹣2)2+9=﹣x2+4x+5


(2)

解:方法一:

当a=1时,E(1,0),F(2,0),OE=1,OF=2.

设P(x,﹣x2+4x+5),

如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,

∴MN=ON﹣OM=﹣x2+4x+4.

S四边形MEFP=S梯形OFPN﹣SPMN﹣SOME

= (PN+OF)ON﹣ PNMN﹣ OMOE

= (x+2)(﹣x2+4x+5)﹣ x(﹣x2+4x+4)﹣ ×1×1

=﹣x2+ x+

=﹣(x﹣ 2+

∴当x= 时,四边形MEFP的面积有最大值为

把x= 时,y=﹣( ﹣2)2+9=

此时点P坐标为(

方法二:

连接MF,过点P作x轴垂线,交MF于点H,

显然当SPMF有最大值时,四边形MEFP面积最大.

当a=1时,E(1,0),F(2,0),

∵M(0,1),

∴lMF:y=﹣ x+1,

设P(t,﹣t2+4t+5),H(t,﹣ t+1),

∴SPMF= (PY﹣HY)(FX﹣MX),

∴SPMF= (﹣t2+4t+5+ t﹣1)(2﹣0)=﹣t2+ t+4,

∴当t= 时,SPMF最大值为

∵SMEF= EF×MY= ×1×1=

∴S四边形MEFP的最大值为 + =


(3)

解:方法一:

∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,

∴点P的纵坐标为3.

令y=﹣x2+4x+5=3,解得x=2±

∵点P在第一象限,∴P(2+ ,3).

四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.

如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);

作点M1关于x轴的对称点M2,则M2(1,﹣1);

连接PM2,与x轴交于F点,此时ME+PF=PM2最小.

设直线PM2的解析式为y=mx+n,将P(2+ ,3),M2(1,﹣1)代入得:

,解得:m= ,n=﹣

∴y= x﹣

当y=0时,解得x= .∴F( ,0).

∵a+1= ,∴a=

∴a= 时,四边形PMEF周长最小.

方法二:

∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,

∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±

∵点P在第一象限,∴P(2+ ,3),PM、EF长度固定,

当ME+PF最小时,PMEF的周长取得最小值,

将点M向右平移1个单位长度(EF的长度),得M1(1,1),

∵四边形MEFM1为平行四边形,

∴ME=M1F,

作点M1关于x轴的对称点M2,则M2(1,﹣1),

∴M2F=M1F=ME,

当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,

∵P(2+ ,3),M2(1,﹣1),F(a+1,0),

∴KPF=KM1F

∴a=


【解析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标;(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2 , 则M2(1,﹣1);连接PM2 , 与x轴交于F点,此时ME+PF=PM2最小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.

(1)求A,B两种品牌的足球的单价.
(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE= ∠ABC(0°<∠CBE<∠ ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′, 求证:DE′=DE.

(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE= ∠ABC(0°<∠CBE<45°). 求证:DE2=AD2+EC2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据悉,2013年财政部核定海南省发行的60亿地方政府“债券资金”,全部用于交通等重大项目建设.以下是60亿“债券资金”分配统计图:
(1)请将条形统计图补充完整;
(2)在扇形统计图中,a= , b=(都精确到0.1);
(3)在扇形统计图中,“教育文化”对应的扇形圆心角的度数为°(精确到1°)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时, 的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其它区别,从袋中随机地摸出1只球,记录下颜色后放回搅匀,再摸出第二只球并记录颜色,求两次都摸出白球的概率.

查看答案和解析>>

同步练习册答案