【题目】如图,AM∥BN,∠MAB和∠NBA的角平分线相交于点P,过点P作直线EF分别交AM、BN于F、E.
(1)求证:AB=AF+BE;
(2)若EF绕点P旋转,F在MA的延长线上滑动,如图,请你测量,猜想AB、AF、BE之间的关系,写出这个关系式,并加以证明.
【答案】(1)证明见解析;(2)见解析.
【解析】
(1)延长AP交BE于Q,求出AB=BQ,根据BP平分∠ABE求出AP=PQ,推出AF=EQ,即可得出答案;
(2)①求出AB=BQ,根据BP平分∠ABE求出AP=PQ,推出AF=EQ,即可得出答案;
②延长AP交BE于Q,同①可得AB=BQ,再求出AF=EQ,即可得出答案.
(1)延长AP交BE于Q,
∵AP平分∠MAB,
∴∠MAP=∠BAP,
∵AM∥BN,
∴∠MAP=∠AQB,
∴∠BAP=∠AQB,
∴AB=BQ,
∵BP平分∠ABE,
∴AP=PQ,
∵AM∥BN,
∴==1,
∴AF=EQ,
∴AB=AF+BE;
(2)①成立,
如图2,
延长AP交BE于Q,
∵AP平分∠MAB,
∴∠MAP=∠BAP,
∵AM∥BN,
∴∠MAP=∠AQB,
∴∠BAP=∠AQB,
∴AB=BQ,
∵BP平分∠ABE,
∴AP=PQ,
∵AM∥BN,
∴==1,
∴AF=EQ,
∴AB=AF+BE;
②不同,猜想:AF+AB=BE,
证明:延长AP交BE于Q,
∵AP平分∠MAB,
∴∠MAP=∠BAP,
∵AM∥BN,
∴∠MAP=∠AQB,
∴∠BAP=∠AQB,
∴AB=BQ,
∵BP平分∠ABE,
∴AP=PQ,
∵AM∥BN,
∴==1,
∴AF=EQ,
∴AF+AB=BE.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,两线相交于F点.
(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;
(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列结论中,错误的有( )
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;
②△ABC的三边长分别为AB,BC,AC,若+=,则∠A=90°;
③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;
④若三角形的三边长之比为3:4:5,则该三角形是直角三角形.
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=ax+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;
(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线y=ax+bx+4对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点D为直角三角形ABC的斜边AB上的中点,DE⊥AB交AC于E, 连EB、CD,线段CD与BF交于点F.若tanA=,则=_____.如图2,点D为直角三角形ABC的斜边AB上的一点,DE⊥AB交AC于E, 连EB、CD;线段CD与BF交于点F.若,tanA=,则=____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴,轴分别交于,两点,若将直线向右平移个单位得到直线,与轴,轴分别交于,两点.
(1)求点的坐标;
(2)如图1,若点是直线上一动点,且,轴,连接,求的最小值及此时点的坐标;
(3)如图2,将线段绕点顺时针旋转,得到线段,延长线段得到直线,线段在直线上移动,当以点、、构成的三角形是等腰三角形时,直接写出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com