【题目】如图,直线与轴,轴分别交于,两点,若将直线向右平移个单位得到直线,与轴,轴分别交于,两点.
(1)求点的坐标;
(2)如图1,若点是直线上一动点,且,轴,连接,求的最小值及此时点的坐标;
(3)如图2,将线段绕点顺时针旋转,得到线段,延长线段得到直线,线段在直线上移动,当以点、、构成的三角形是等腰三角形时,直接写出点的坐标.
【答案】(1)D(0,5);(2)+;N(,);(3)A'(, ),A'(,);A'(, ),A'(,);A'(5-,-);
【解析】
(1)求出直线L2:y=-x+5即可求出D;
(2)求出两直线间距离MN=,作B点关于L2的对称点B',与L2的交点为F,过点F作FH⊥x轴,交于L1于N,过点N作MN⊥L2,则BM+MN+NH的最小值即为+FH;过点B作BG⊥FH,在Rt△BGF中,∠FBG=60°,BF=,求出F( );在Rt△BNG中,∠GBN=30°,BG=,求出N(,),则可求FH=,即可德奥BM+MN+NH的最小值+;
(3)由已知可知,AC⊥A'C,AC=A'C,求得A'(5,2),再由直线L1与直线L3垂直,可求直线L3:y=x+2-15,设A'(m,m+2-15),则B'(m+3, m+5-15),
①当A'B'=A'C时,A'C=6,所以36=(m5)2+(m+215)2;②当A'B'=B'C时,B'C=6,所以36=(m+35)2+(m+515)2,③当A'C=B'C时,(m5)2+(m+215)2=(m+35)2+(m+515)2span>,分别求出m即可.
(1)由已知可得A(3,0),B(0,3),
∵将直线l1向右平移2个单位得到直线L2,
∴C(5,0),
∴直线L2:y=x+5,
∴D(0,5);
(2)过点A作AE⊥L2,
∵AC=2,∠DCA=30°,
∴AE=,
∴MN=,
∴BM+MN+NH的最小值即为BM++NH的最小值,
作B点关于L2的对称点B',与L2的交点为F,过点F作FH⊥x轴,交于L1于N,过点N作MN⊥L2,
则BM+MN+NH的最小值即为+FH;
由作图可得,四边形FNMB'是平行四边形,
∴B'M=FN,
∵B与B'关于L2对称,
∴BM=B'M,
∴BM=FN,
在Rt△BDF中,BF=,BD=2,
∴∠DBF=30°,
过点B作BG⊥FH,
在Rt△BGF中,∠FBG=60°,BF=,
∴GB=,FG=,
∴F(,),
在Rt△BNG中,∠GBN=30°,BG=,
∴GN=,
∴N(,),
∴FH=,
∴BM+MN+NH的最小值+;
(3)由已知可知,AC⊥A'C,AC=A'C,
∴A'(5,2),
∵直线L1与直线L3垂直,
∴直线L3:y=x+2-15,
∵A(3,0),B(0,3),
∴AB=6,
设A'(m,m+2-15),则B'(m+3,m+5-15),
①当A'B'=A'C时,A'C=6,
∴36=(m5)2+(m+215)2
∴m= 或m=,
∴A'(, ),A'(,);
②当A'B'=B'C时,B'C=6,
∴36=(m+35)2+(m+515)2,
∴m= 或m=;
∴A'(, ),A'(,);
③当A'C=B'C时,
(m5)2+(m+215)2=(m+35)2+(m+515)2,
∴m=5-;
∴A'(5-,-);
综上所述A'(, ),A'(,);
,A'(, ),A'(,);
;A'(5-,-);
科目:初中数学 来源: 题型:
【题目】如图,AM∥BN,∠MAB和∠NBA的角平分线相交于点P,过点P作直线EF分别交AM、BN于F、E.
(1)求证:AB=AF+BE;
(2)若EF绕点P旋转,F在MA的延长线上滑动,如图,请你测量,猜想AB、AF、BE之间的关系,写出这个关系式,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】半期考试来临,元元到文具店购买考试用的铅笔,签字笔和钢笔,其中铅笔每支8元,签字笔每支l0元,钢笔每支20元,若他一共用了122元,那么他最多能买钢笔_______支.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,BD为AC的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接 BG,DF.若AF=8,CF=6,则四边形BDFG的周长为_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由甲、乙两个工程队承包某校园绿化工程,已知甲、乙两队单独完成这项工程所需时间比是2:3,且两队合作6天可以完成.
(1)求甲、乙两队单独完成此工程分别需要多少天?
(2)甲队工作一天需付报酬3500元,乙队工作一天需付报酬2000元,学校需要在9天内完成绿化工作,学校该如何安排甲、乙两队工作时间,才能使得所付报酬最少?最少报酬是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,
(1)求证:AE=CE;
(2)求证:四边形ABDF是平行四边形;
(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com