精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形的边长为10,连接,则线段的长为(

A.B.C.D.

【答案】B

【解析】

延长DHAG于点E,利用SSS证出△AGB≌△CHD,然后利用ASA证出△ADE≌△DCH,根据全等三角形的性质求出EGHE和∠HEG,最后利用勾股定理即可求出HG

解:延长DHAG于点E

∵四边形ABCD为正方形

AD=DC=BA=10,∠ADC=BAD=90°

在△AGB和△CHD

∴△AGB≌△CHD

∴∠BAG=DCH

∵∠BAG+∠DAE=90°

∴∠DCH+∠DAE=90°

CH2DH2=8262=100= DC2

∴△CHD为直角三角形,∠CHD=90°

∴∠DCH+∠CDH=90°

∴∠DAE=CDH

∵∠CDH+∠ADE=90°

∴∠ADE=DCH

在△ADE和△DCH

∴△ADE≌△DCH

AE=DH=6DE=CH=8,∠AED=DHC=90°

EG=AGAE=2HE= DEDH=2,∠GEH=180°-∠AED=90°

RtGEH中,GH=

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与y

轴相交于负半轴。给出四个结论:①;②;③;④ ,其中正确结论的序

号是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,两线相交于F点.

(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;

(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=3x与双曲线y= k0,且x0)交于点A,点A的横坐标是1

1)求点A的坐标及双曲线的解析式;

2)点B是双曲线上一点,且点B的纵坐标是1,连接OBAB,求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程x2-(k+2)x+k-1=0

(1)若方程的一个根为 -1,求的值和方程的另一个根;

(2)求证:不论取何值,该方程都有两个不相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(BFC在一条直线上).

(1)求办公楼AB的高度;

(2)若要在AE之间挂一些彩旗,请你求出AE之间的距离.

(参考数据:sin22°cos22°tan22°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论中错误的有( )

RtABC已知两边长分别为34,则第三边的长为5;

ABC的三边长分别为ABBCAC+=A=90°;

ABCA:∠B:∠C=1:5:6,ABC是直角三角形

若三角形的三边长之比为3:4:5,则该三角形是直角三角形

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=B.

(1)求证:AD是⊙O的切线.

(2)若BC=8,tanB=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴,轴分别交于两点,若将直线向右平移个单位得到直线轴,轴分别交于两点.

1)求点的坐标;

2)如图1,若点是直线上一动点,且轴,连接,求的最小值及此时点的坐标;

3)如图2,将线段绕点顺时针旋转,得到线段,延长线段得到直线,线段在直线上移动,当以点构成的三角形是等腰三角形时,直接写出点的坐标.

查看答案和解析>>

同步练习册答案