【题目】下列说法正确的是( )
①经过三个点一定可以作圆;②若等腰三角形的两边长分别为3和7,则第三边长是3或7;③一个正六边形的内角和是其外角和的2倍;④随意翻到一本书的某页,页码是偶数是随机事件;⑤关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根.
A.①②③B.①④⑤C.②③④D.③④⑤
【答案】D
【解析】
利用不在同一直线上的三个点确定一个圆,等腰三角形的性质及三角形三边关系、正多边形内角和公式和外角和、随机事件的定义及一元二次方程根的判别式分别判断后即可确定正确的选项.
解:经过不在同一直线上的三个点一定可以作圆,故①说法错误;
若等腰三角形的两边长分别为3和7,则第三边长是7,故②说法错误;
③一个正六边形的内角和是180°×(6-2)=720°其外角和是360°,所以一个正六边形的内角和是其外角和的2倍,故③说法正确;
随意翻到一本书的某页,页码可能是奇数,也可能是偶数,所以随意翻到一本书的某页,页码是偶数是随机事件,故④说法正确;
关于x的一元二次方程x2-(k+3)x+k=0,,所以方程有两个不相等的实数根,故⑤说法正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBA和△EDC一定是全等三角形;②△EBD是等腰三角形,EB=ED;③折叠后得到的图形是轴对称图形;④折叠后∠ABE和∠CBD一定相等;其中正确的有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是一辆汽车油箱里剩油量与行驶时间的图像,根据图像回答下列问题:
(1)汽车行驶前油箱里有______汽油;
(2)当汽车行驶时,油箱里还有______汽油;
(3)汽车最多能行驶______,它每小时耗油______;
(4)油箱中剩油行驶时间之间的函数关系式是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
根据图示填写下表:
平均数分 | 中位数分 | 众数分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).
(1)求抛物线的解析式;
(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;
(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,点A、B的坐标分别为,,P为y轴上B点下方一点, ,以AP为边作等腰直角△APM,其中,点M落在第四象限.若直线MB与x轴交于点Q,则Q、M两点中,点_________(填“Q”或“M”)的坐标不随m的变化而变化,该点的坐标为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,EG⊥BC于点G,连接AG、FG.下列结论:①AE=CE;②△ABF≌△GBF;③BE⊥AG;④△AEF为等腰三角形.其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1:y=2x+1与坐标轴交于A、C两点,直线l2:y=﹣x﹣2与坐标轴交于B、D两点,两线的交点为P点,
(1)求出点P的坐标;
(2)求△APB的面积;
(3)在x轴上是否存在点Q,使得△OPQ的面积等于6,若存在,求出Q点坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com