【题目】对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”。
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;
(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数。若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.
【答案】(1)1287,2376,8712,任意一个“极数”都是99的倍数,理由见解析;(2)D(m)是完全平方数的所有m值为1188或2673或4752或7425.
【解析】
(1)先直接利用“极数”的意义写出三个,设出四位数n的个位数字和十位数字,进而表示出n,即可得出结论;
(2)先确定出四位数m,进而得出D(m),再再根据完全平方数的意义即可得出结论.
解:(1)根据“极数”的意义得,1287,2376,8712,
任意一个“极数”都是99的倍数,
理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)
∴百位数字为(9﹣x),千位数字为(9﹣y),
∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),
∵x是0到9的整数,y是0到8的整数,
∴100﹣10y﹣x是整数,
∴99(100﹣10y﹣x)是99的倍数,
即:任意一个“极数”都是99的倍数;
(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)
∴m=99(100﹣10y﹣x),
∵m是四位数,
∴m=99(100﹣10y﹣x)是四位数,
即1000≤99(100﹣10y﹣x)<10000,
∵D(m)==3(100﹣10y﹣x),
∴30≤3(100﹣10y﹣x)≤303
∵D(m)完全平方数,
∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,
∴3(100﹣10y﹣x)只有36,81,144,225这四种可能,
∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.
(1)求证:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.
(1)根据图象,直接写出满足的的取值范围;
(2)求这两个函数的表达式;
(3)点在线段上,且,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个二次函数满足以下条件:
①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);
②对称轴是x=3;
③该函数有最小值是﹣2.
(1)请根据以上信息求出二次函数表达式;
(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有A、B两地,甲、乙两辆货车都要从A地送货到B地,甲车先从A地出发匀速行驶,3小时后,乙车从A地出发,并沿同一路线匀速行驶,当乙车到达B地后立刻按原速返回,在返回途中第二次与甲车相遇。甲车出发的时间记为t (小时),两车之间的距离记为y(千米),y与t的函数关系如图所示,则乙车第二次与甲车相遇时,甲车距离A地___千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
(1)求出该函数图象的顶点坐标,对称轴,图象与轴、轴的交点坐标;
(2)在什么范围内时,随的增大而增大?当在什么范围内时,随的增大而减小?
(3)当在什么范围内时,?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的是( )
A.①③B.①②③④C.①②③D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相交于A(3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C.D是二次函数图象上的一对对称点,一次函数的图象过点B. D.
(1)求D点坐标;
(2)根据图象直接写出使一次函数值小于二次函数值的x的取值范围
(3)求二次函数的解析式及顶点坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若OH⊥AC,OH=1,求DH的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com