【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若OH⊥AC,OH=1,求DH的长.
【答案】(1)见解析;(2) .
【解析】
(1)根据同弧所对的圆心角是圆周角的2倍得到∠AOC的大小,再根据边角关系证明∠PAO是直角,从而证明出PA是⊙O的切线(2)要求DH的长,先根据已知条件证明△CAD是直角三角形,进而可以得到结果.
(1)连接AO
∵ 在⊙O中,∠B=60° ∴ ∠AOC=2∠B=120°
∴ ∠AOD=180°-∠AOC=60°
∵OA=OC ∴∠OCA=∠OAC=30°
∵AP=AC ∴∠APC=∠ACO=30°
∴∠PAO=180°-∠AOD-∠APC=90°
∵点A在⊙O上 ∴PA是⊙O的切线.
(2)连接AD
∵ 在⊙O中,OH⊥AC
∴AH=HC
∵ 在⊙O中,DC为直径
∴∠DAC=90°
∵ AH=HC,OD=OC
∴OH是△CAD的中位线
∴AD=2OH=2
∵在Rt△OCH中 ∴tan∠OCH= ∴HC= ∴AH=CH=
∵在Rt△HAD中 ∴HD==.
科目:初中数学 来源: 题型:
【题目】如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C(﹣1,4),请按下列要求画图:
(1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1;
(2)画出与△ABC关于原点O成中心对称的△A2B2C2,并直接写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长均为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点(网格线的交点)上,请按要求完成下列各题.
(1)试证明△ABC是直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠A=50°,∠E=45°,则∠F=____°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近视镜镜片的焦距(单位:米)是镜片的度数(单位:度)的函数,下表记录了一组数据:
(单位:度) | … | 100 | 250 | 400 | 500 | … |
(单位:米) | … | 1.00 | 0.40 | 0.25 | 0.20 | … |
(1)在下列函数中,符合上述表格中所给数据的是_________;
A. B. C. D.
(2)利用(1)中的结论计算:当镜片的度数为200度时,镜片的焦距约为________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.
(1)如图1,
①求证:点在以点为圆心,为半径的圆上.
②直接写出∠BDC的度数(用含α的式子表示)为___________.
(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).
(1)如图①,当点A′,B,B′共线时,求AA′的长.
(2)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;
(3)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com