【题目】一个四位数,记千位数字与个位数字之和为
,十位数字与百位数字之和为
,如果
,那么称这个四位数为“对称数”
最小的“对称数”为 ;四位数
与
之和为最大的“对称数”,则
的值为 ;
一个四位的“对称数”
,它的百位数字是千位数字
的
倍,个位数字与十位数字之和为
,且千位数字
使得不等式组
恰有
个整数解,求出所有满足条件的“对称数”
的值.
科目:初中数学 来源: 题型:
【题目】如图1,以
为直径作半圆
,点
在半圆上,连结
,
,且
.连结
,
是
边上的高,过点
作
交
的延长线于点
,交
于点
.
(1)求证:
.
(2)当
为
的中点时,求
的值.
(3)如图2,取
的中点
,连结
.
①若
,在点
运动过程中,当四边形
的其中一边长是
的2倍时,求所有满足条件的
长.
②连结
,当
的面积是
的面积的3倍时,求
的值(请直接写出答案).
图1
图2![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:
(1)求y与x的函数解析式(也称关系式);
(2)求这一天销售西瓜获得的利润的最大值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,
AOB与
COD面积分别为8和18,若双曲线y=
恰好经过BC的中点E,则k的值为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系
中,二次函数
(
,
为常数)的图像顶点的纵坐标为
.
(1)直接写出
、
满足的关系式是______;
(2)若点
,
(
)是二次函数
(
,
为常数)的图像上的两点.
①当
,
时,求
的长度;
②当
时,求
的长度;
③若存在实数
,使得
,且
成立,求
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.
![]()
(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;
②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为 .
(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.
![]()
(1)求抛物线的解析式;
(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?
(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com