【题目】某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:
(1)求y与x的函数解析式(也称关系式);
(2)求这一天销售西瓜获得的利润的最大值.
【答案】(1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.
【解析】
(1)当6x≤10时,由题意设y=kx+b(k=0),利用待定系数法求得k、b的值即可;当10<x≤12时,由图象可知y=200,由此即可得答案;
(2))设利润为w元,当6≦x≤10时,w=-200+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w=200x-1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.
(1)当6x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),
∴ ,
解得 ,
∴当6x≤10时, y=-200x+2200,
当10<x≤12时,y=200,
综上,y与x的函数解析式为;
(2)设利润为w元,
当6x≤10时,y=-200x+2200,
w=(x-6)y=(x-6)(-200x+200)=-200+1250,
∵-200<0,6≦x≤10,
当x=时,w有最大值,此时w=1250;
当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,
∴200>0,
∴w=200x-1200随x增大而增大,
又∵10<x≤12,
∴当x=12时,w最大,此时w=1200,
1250>1200,
∴w的最大值为1250,
答:这一天销售西瓜获得利润的最大值为1250元.
科目:初中数学 来源: 题型:
【题目】如图,已知在正方形中,
,
是线段
上的一动点,连接
,过点
作
交
于点
.以
为直径作
,当点
从点
移动到点
时,对应点
也随之运动,则点
运动的路程长度为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点A坐标为,点B的坐标为
.将二次函数
的图象经过左(右)平移
个单位再上(下)平移
个单位得到图象M,使得图象M的顶点落在线段AB上.下列关于a,b的取值范围,叙述正确的是( )
A.,
B.
,
C.,
D.
,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、
B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横
坐标为t.
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①;②△DFP△BPH;③
; ④
.其中正确的是______.(写出所有正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)C类女生有 名,D类男生有 名,将上面条形统计图补充完整;
(2)扇形统计图中“课前预习不达标”对应的圆心角度数是 ;
(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个四位数,记千位数字与个位数字之和为,十位数字与百位数字之和为
,如果
,那么称这个四位数为“对称数”
最小的“对称数”为 ;四位数
与
之和为最大的“对称数”,则
的值为 ;
一个四位的“对称数”
,它的百位数字是千位数字
的
倍,个位数字与十位数字之和为
,且千位数字
使得不等式组
恰有
个整数解,求出所有满足条件的“对称数”
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.
(1)当点F与点B重合时,求CP的长;
(2)设CP=x,OF=y,求y与x的函数关系式及定义域;
(3)如果GP=GF,求△EPF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com