精英家教网 > 初中数学 > 题目详情
17.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:
①当x>3时,y<0;②3a+b<0;③-1≤a≤-$\frac{2}{3}$;④4ac-b2>8a;
其中正确的结论是(  )
A.①③④B.①②③C.①②④D.①②③④

分析 ①先由抛物线的对称性求得抛物线与x轴令一个交点的坐标为(3,0),从而可知当x>3时,y<0;
②由抛物线开口向下可知a<0,然后根据x=-$\frac{b}{2a}$=1,可知:2a+b=0,从而可知3a+b=0+a=a<0;
③设抛物线的解析式为y=a(x+1)(x-3),则y=ax2-2ax-3a,令x=0得:y=-3a.由抛物线与y轴的交点B在(0,2)和(0,3)之间,可知2≤-3a≤3.④由4ac-b2>8a得c-2<0与题意不符.

解答 解:①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,0),当x>3时,y<0,故①正确;
②抛物线开口向下,故a<0,
∵x=-$\frac{b}{2a}$=1,
∴2a+b=0.
∴3a+b=0+a=a<0,故②正确;
③设抛物线的解析式为y=a(x+1)(x-3),则y=ax2-2ax-3a,
令x=0得:y=-3a.
∵抛物线与y轴的交点B在(0,2)和(0,3)之间,
∴2≤-3a≤3.
解得:-1≤a≤-$\frac{2}{3}$,故③正确;
④.∵抛物线y轴的交点B在(0,2)和(0,3)之间,
∴2≤c≤3,
由4ac-b2>8a得:4ac-8a>b2
∵a<0,
∴c-2<$\frac{{b}^{2}}{4a}$
∴c-2<0
∴c<2,与2≤c≤3矛盾,故④错误.
故选:B.

点评 本题主要考查的是二次函数的图象和性质,掌握抛物线的对称轴、开口方向与系数a、b、c之间的关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系中,△ABC的位置如图所示,其中点B(-3,1),解答下列问题:
(1)将△ABC绕着点O(0,0)顺时针旋转90°得到△A1B1C1,并写出B1的坐标;
(2)在网格图中,以O为位似中心在另一侧将△A1B1C1放大2倍得到△A′B′C′,并写出B′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.将“对顶角相等”这个命题改写成“如果…,那么…”的形式如果两个角是对顶角,那么它们相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.化简:$\frac{{x}^{2}+6x+9}{{x}^{2}-9}$÷$\frac{x+3}{{x}^{2}-3x}$-x+3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知如图1,平行四边形OABC的顶点O为平面直角坐标系原点,边OA在x轴正半轴上,点A(4,0),C(1,2)
(1)写出点B的坐标,计算平行四边形OABC的面积;
(2)过点O的直线与线段BC或AB交于点P,若直线OP将平行四边形OABC的面积分成1:3两部分,求点P的坐标;
(3)如图2,OE平分∠AOC,点F为OC延长线上一点,点M为BC上一点,连接FM,ME,且MB平分∠FME,且2∠E与∠F互补,求∠FME的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知一次函数y=$\frac{3}{2}$x-3与反比例函数y=$\frac{k}{x}$的图象相交于点A(4,n),与x轴相交于点B.
(1)填空:n的值为3,k的值为12;
(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;
(3)观察反比例函数y=$\frac{k}{x}$的图象,当y≥-2时,请直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.直角三角形的两边长分别为3和5,则另一边长为(  )
A.4B.$\sqrt{41}$C.4或$\sqrt{34}$D.4或$\sqrt{41}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列关系式中,正确的是(  )
A.(a+b)2=a2-2ab+b2B.(a-b)2=a2-b2C.(a+b)(-a+b)=b2-a2D.(a+b)(-a-b)=a2-b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.
(1)求足球开始飞出到第一次落地时,该抛物线的解析式;
(2)足球第一次落地点C距守门员多少米?

查看答案和解析>>

同步练习册答案