精英家教网 > 初中数学 > 题目详情

【题目】在矩形中,是边上一点,以点为直角顶点,在的右侧作等腰直角

1)如图1,当点边上时,求的长;

2)如图2,若,求的长;

3)如图3,若动点从点出发,沿边向右运动,运动到点停止,直接写出线段的中点的运动路径长.

【答案】1;(2;(3)线段的中点的运动路径长为

【解析】

1)如图1中,证明△ABE≌△ECFAAS),即可解决问题.

2)如图2中,延长DFBC交于点N,过点FFMBC于点M.证明△EFM≌△DNCAAS),设NC=FM=x,利用勾股定理构建方程即可解决问题.

3)如图3中,在BC上截取BM=BA,连接AMMF,取AM的中点H,连接HQ.由△ABE∽△AMF,推出∠AMF=ABE=90°,由AQ=FQAH=MH,推出HQFM,推出∠AHQ=90°,推出点Q的运动轨迹是线段HQ,求出MF的长即可解决问题.

1)如图1中,

四边形是矩形,

2)如图2中,延长交于点,过点于点

同理可证

,则

即在中,

中,

中,

,解得(舍弃),即

3)如图3中,在上截取,连接,取的中点,连接

的运动轨迹是线段

当点从点运动到点时,

线段的中点的运动路径长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线与直线相交于点

1)求出a,b的值;

2)根据图象直接写出不等式的解集;

3)求出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为直角三角形,∠C=90°,BC=2cm,A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.RtABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设RtABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2xs之间函数关系的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了开展阳光体育运动,计划购买篮球与足球共,已知每个篮球的价格为元,每个足球的价格为

(1)若购买这两类球的总金额为元,求篮球和足球各购买了多少个?

(2)元旦期间,商家给出蓝球打九折,足球打八五折的优惠价,若购买这种篮球与足球各个,那么购买这两类球一共需要多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点表示的数为,表示的数为,为边在数轴的上方作正方形ABCD.动点从点出发,以每秒个单位长度的速度沿数轴正方向匀速运动,同时动点从点出发,以每秒个单位长度的速度向点匀速运动,到达点后再以同样的速度沿数轴正方向匀速运动,设运动时间为.

(1)若点在线段.上运动,当t为何值时,?

(2)若点在线段上运动,连接,t为何值时,三角形的面积等于正方形面积的?

(3)在点和点运动的过程中,当为何值时,点与点恰好重合?

(4)当点在数轴上运动时,是否存在某-时刻t,使得线段的长为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在Rt△ABC中,∠ACB=90°,AC=4,BC=8,O是AB边的中点,P是AC边上的动点,OE⊥OP交BC边于点E,连接PE.

(1)如图①,当P与C重合时,线段PE的长为___________

(2)如图②,当P在AC边上运动时,

①探究:线段PA,PE,EB之间的数量关系,并证明你的结论;

②若设PA=,PE2=y,求y与x之间的函数关系式及线段PE的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电动车厂一周计划生产2100辆电动车,平均每天计划生产300辆,由于各种原因,实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负).

1)根据记录可知本周前三天共生产电动车多少辆?

2)本周产量最多的一天比产量最少的一天多生产电动车多少辆?

3)该厂实行每周计件工资制,每生产一辆电动车可得a元,若超额完成,则超额部分每辆再奖b(ba),少生产一辆扣b元,求该厂工人这一周的工资总额.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点EF分别在边ABCD上,点GH在对角线AC上,EFAC相交于点OAG=CHBE=DF

1)求证:四边形EGFH是平行四边形;

2)当EG=EH时,连接AF

①求证:AF=FC

②若DC=8AD=4,求AE的长.

查看答案和解析>>

同步练习册答案