精英家教网 > 初中数学 > 题目详情

【题目】综合与实践:制作无盖盒子

任务一:如图1,有一块矩形纸板,长是宽的2倍,要将其四角各剪去一个正方形,折成高为4cm,容积为的无盖长方体盒子纸板厚度忽略不计

请在图1的矩形纸板中画出示意图,用实线表示剪切线,虚线表示折痕.

请求出这块矩形纸板的长和宽.

任务二:图2是一个高为4cm的无盖的五棱柱盒子直棱柱,图3是其底面,在五边形ABCDE中,

试判断图3AEDE的数量关系,并加以证明.

2中的五棱柱盒子可按图4所示的示意图,将矩形纸板剪切折合而成,那么这个矩形纸板的长和宽至少各为多少cm?请直接写出结果图中实线表示剪切线,虚线表示折痕纸板厚度及剪切接缝处损耗忽略不计

【答案】任务一:(1)作图见试题解析;(2)30,15;任务二(1)AE=DE;(2)

【解析】

试题任务一:(1)按要求画出示意图即可;

(2)设矩形纸板的宽为xcm,则长为2xcm,根据题意列出方程,解出即可.

任务二:(1)AD=DE,延长EAED分别交直线BC于点MN先证明MAB≌△NDC,得到AM=DN即可;

(2)如图4,由(1)得;AE=DE,∠EAD=∠EDA=30°,由已知得,AG=DF=4,连接ADGF,过BC分别作BMADMCNADN,过EEPADP,则GF即为矩形纸板的长,MN=BC=12,AP=DP得到BAM=∠CDN=60°,求出AMDNBMCN的长,然后通过三角形相似即可得到结果.

试题解析:任务一:(1)如图1所示:

(2)设矩形纸板的宽为xcm,则长为2xcm,由题意得:4(x﹣2×4)(2x﹣2×4)=616,解得:(舍去),∴2x=2×15=30,

答:矩形纸板的长为30cm,宽为15cm

任务二:(1)AE=DE,证明如下:延长EAED分别交直线BCMN,∵∠ABC=∠BCD=120°,∴∠ABM=∠DCN=60°,∵∠EAB=∠EDC=90°,∴∠M=∠N=30°,∴EM=EN,在MABNDC中,∵∠M=∠N,∠ABM=∠DCNAB=DC,∴△MAB≌△NDC,∴AM=DN,∴EMAM=ENDN,∴AE=DE

(2)如图4,由(1)得;AE=DE,∠EAD=∠EDA=30°,由已知得,AG=DF=4,连接ADGF,过BC分别作BMADMCNADN,过EEPADP,则GF即为矩形纸板的长,MN=BC=12,AP=DP,∴∠BAM=∠CDN=60°,∵AB=CD=6,∴AM=DN=3,BM=CN=,∴AP=AD=(3+3+12)=9,∴AE=PE=,∵ADGF,∴△EAD∽△EGF,∴,∴GF=,∴矩形纸板的长至少为,矩形纸板的宽至少为PE+BM++4==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,CAB=90°ADBC于点D,点EAB的中点,ECAD交于点G,点FBC上.

1)如图1ACAB=12EFCB,求证:EF=CD

2)如图2ACAB=1EFCE,求EFEG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从A出发沿AB以3cm/s的速度向点B移动,一直到达点B为止;同时,点Q从点C出发沿以2cm/s的速度向点D移动.经过多长时间P、Q两点的距离是10?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+ca≠0)图象的一部分,直线x=-1是对称轴,有下列判断:①b-2a=0②4a-2b+c0③a-b+c=-9a若(-3y1),(y2)是抛物线上两点,则y1y2,其中正确的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=

(1)求反比例函数的解析式;

(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=ACAB的垂直平分线DEAC所在的直线相交于点E,垂足为D,连接BE.已知AE=5tanAED=,求BE+CE的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,我国两艘海监船AB在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin 53°≈cos 53°≈tan 53°≈≈1.41)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知公路lAB两点之间的距离为50m,小明要测量点C与河对岸边公路l的距离,测得∠ACB=∠CAB30°.点C到公路l的距离为(  )

A. 25m B. m C. 25m D. 25+25m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

同步练习册答案