精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数y=ax2+bx+ca≠0)图象的一部分,直线x=-1是对称轴,有下列判断:①b-2a=0②4a-2b+c0③a-b+c=-9a若(-3y1),(y2)是抛物线上两点,则y1y2,其中正确的个数是( )

A. 1B. 2C. 3D. 4

【答案】C

【解析】

试题 根据直线x=-1是对称轴,确定b-2a的值;

根据x=-2时,y0确定4a-2b+c的符号;

根据x=-4时,y=0,比较a-b+c-9a的大小;

根据抛物线的对称性,得到x=-3x=1时的函数值相等判断即可.

试题解析:①∵直线x=-1是对称轴,

∴-=-1,即b-2a=0正确;

②x=-2时,y0

∴4a-2b+c0错误;

∵x=-4时,y=0

∴16a-4b+c=0,又b=2a

∴a-b+c=-9a正确;

根据抛物线的对称性,得到x=-3x=1时的函数值相等,

∴y1y2正确,

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为20cm,∠ABC120°.动点PQ同时从点A出发,其中P4cm/s的速度,沿ABC的路线向点C运动;Q2cm/s的速度,沿AC的路线向点C运动.当PQ到达终点C时,整个运动随之结束,设运动时间为t秒.

1)在点PQ运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;

2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N

①当t为何值时,点PMN在一直线上?

②当点PMN不在一直线上时,是否存在这样的t,使得PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个模型的三视图如图所示(单位:m)

(1)请描述这个模型的形状;

(2)若制作这个模型的木料密度为360 kg/m3,则这个模型的质量是多少?

(3)如果用油漆漆这个模型,每千克油漆可以漆4 m2,那么需要多少千克油漆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,这一种方法称为配方法,利用配方法请解以下各题:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:当a取不同的实数时在得到的代数式a24a的值中是否存在最小值?请说明理由.

(3)应用:如图.已知线段AB6MAB上的一个动点,设AMx,以AM为一边作正方形AMND,再以MBMN为一组邻边作长方形MBCN.问:当点MAB上运动时,长方形MBCN的面积是否存在最大值?若存在,请求出这个最大值;否则请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠C90°AC4BC3,如图1,四边形DEFGABC的内接正方形,则正方形DEFG的边长为_____.如图2,若三角形ABC内有并排的n个全等的正方形,它们组成的矩形内接于ABC,则正方形的边长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于AB两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知

求抛物线的表达式;

在抛物线的对称轴上是否存在点P,使是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

E是线段BC上的一个动点,过点Ex轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:制作无盖盒子

任务一:如图1,有一块矩形纸板,长是宽的2倍,要将其四角各剪去一个正方形,折成高为4cm,容积为的无盖长方体盒子纸板厚度忽略不计

请在图1的矩形纸板中画出示意图,用实线表示剪切线,虚线表示折痕.

请求出这块矩形纸板的长和宽.

任务二:图2是一个高为4cm的无盖的五棱柱盒子直棱柱,图3是其底面,在五边形ABCDE中,

试判断图3AEDE的数量关系,并加以证明.

2中的五棱柱盒子可按图4所示的示意图,将矩形纸板剪切折合而成,那么这个矩形纸板的长和宽至少各为多少cm?请直接写出结果图中实线表示剪切线,虚线表示折痕纸板厚度及剪切接缝处损耗忽略不计

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在现今互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了,有一种用因式分解法产生的密码、方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为,,此时可以得到数字密码171920.

(1)根据上述方法,,对于多项式分解因式后可以形成哪些数字密码?(写出三个)

(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为xy,求出一个由多项式分解因式后得到的密码(只需一个即可);

(3)若多项式因式分解后,利用本题的方法,时可以得到其中一个密码为242834,mn的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=-x+2x轴、y轴分别交于点AC,抛物线y=-x2bxc过点AC,且与x轴交于另一点B,在第一象限的抛物线上任取一点D,分别连接CDAD,作于点E

(1)求抛物线的表达式;

(2)ACD面积的最大值;

(3)CEDCOB相似,求点D的坐标.

查看答案和解析>>

同步练习册答案