精英家教网 > 初中数学 > 题目详情

【题目】(题文)(问题引领)

问题1:在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结CG,先证明

△CBE≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是________________

(探究思考)

问题2:若将问题1的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC=180°,

∠ECF= ∠BCD, 问题1的结论是否仍然成立?请说明理由.

(拓展延伸)

问题3:在问题2的条件下,若点EAB的延长线上,点FDA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE、DF、EF之间存在什么样的等量关系?并说明理由.

【答案】EF=BE+DF

【解析】

问题1,先证明CBE≌△CDG,再证明CEF≌△CGF,最后用线段的和差即可得出结论;
问题2、先判断出∠ABC=GDC,进而判断出CBE≌△CDG,再证明CEF≌△CGF,最后用线段的和差即可得出结论;
问题3、同问题2的方法即可得出结论.

问题1、BE+FD=EF

理由:延长FD到点G.使DG=BE.连结CG

CBECDG,

CBECDG(SAS),

CE=CGBCE=DCG

∴∠ECF=GCF

CEFCGF,

CEFCGF

EF=GF

EF=DF+DG=DF+BE

故答案为:EF=DF+BE

问题2,问题1中结论仍然成立,如图2,

理由:延长FD到点G.使DG=BE.连结CG

∴∠ABC=GDC,

CBECDG,

CBECDG(SAS),

CE=CGBCE=DCG

∴∠BCD=ECG

∴∠ECF=GCF

CEFCGF,

CEFCGF

EF=GF

EF=DF+DG=DF+BE

问题3.结论:DF=EF+BE;理由:如图3,

延长FD到点G.使DG=BE.连结CG

∴∠ABC=GDC

CBECDG,

∴△CBECDG(SAS),

CE=CGBCE=DCG

∴∠BCD=ECG

∴∠ECF=GCF

CEFCGF,

∴△CEFCGF

EF=GF

DF=FG+DG=EF+BE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30 m到达A′处,
(1)求A,B之间的距离;
(2)求从无人机A′上看目标D的俯角的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件: , 使△AEH≌△CEB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC∠B=40°ADBC边上的高,且∠DAC=20°∠BAC=________

【答案】70°

【解析】∵∠B=40°,AD⊥BC,

∴∠BAD=90°-40°=50°.

∵∠DAC=20°,

∴∠BAC=∠BAD+∠DAC=50°+20°=70°.

型】填空
束】
16

【题目】如图所示,EDABAC上的两点,BDCE交于点O,且AB=AC,使△ACE≌△ABD,你补充的条件是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.

(1)求m、n的值;
(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;
(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB的解析式为y=2x+5,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发.设甲与A地相距y(km),乙与A地相距y(km),甲离开A地时间为x(h),y、yx之间的函数图象如图所示.

(1)甲的速度是   km/h.

(2)请分别求出y、yx之间的函数关系式.

(3)当乙与A地相距240km时,甲与B地相距多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.

(1)求证:△ADE≌△CBF.
(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为( )

A.13
B.19
C.25
D.169

查看答案和解析>>

同步练习册答案