精英家教网 > 初中数学 > 题目详情

【题目】△ABC∠B=40°ADBC边上的高,且∠DAC=20°∠BAC=________

【答案】70°

【解析】∵∠B=40°,AD⊥BC,

∴∠BAD=90°-40°=50°.

∵∠DAC=20°,

∴∠BAC=∠BAD+∠DAC=50°+20°=70°.

型】填空
束】
16

【题目】如图所示,EDABAC上的两点,BDCE交于点O,且AB=AC,使△ACE≌△ABD,你补充的条件是________

【答案】AD=AECD=BE或∠B=C或∠ADB=AEC

【解析】AD=AECD=BE或∠B=C或∠ADB=AEC;理由如下:

AD=AE

ACEABD中,

ACE≌△ABDSAS);

CD=BE

AB=AC

AD=AE

同理:ACE≌△ABDSAS);

若∠B=C

ACEABD中,

∴△ACE≌△ABDASA);

若∠ADB=AEC

ACEABD中,

∴△ACE≌△ABDAAS);

故答案为:AD=AECD=BE或∠B=C或∠ADB=AEC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:

月用水量(吨)

3

4

5

7

8

9

10

户 数

4

3

5

11

4

2

1

(1)求这30户家庭月用水量的平均数,众数和中位数;

(2)根据上述数据,试估计该社区的月用水量;

(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m吨部分加倍收费,你认为上述问题中的平均数、众数、中位数中哪一个量作为月基本用水量比较合理?简述理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某次篮球联赛初赛阶段,每队场比赛,每场比赛都要分出胜负,每队胜一场分, 负一场得分,积分超过分才能获得参赛资格.

(1)已知甲队在初赛阶段的积分为分,甲队初赛阶段胜、负各多少场;

(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.

(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?

(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径

(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)(问题引领)

问题1:在四边形ABCD中,CB=CD,∠B=∠ADC=90°,∠BCD=120°.E,F分别是AB,AD上的点.且∠ECF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结CG,先证明

△CBE≌△CDG,再证明△CEF≌△CGF.他得出的正确结论是________________

(探究思考)

问题2:若将问题1的条件改为:四边形ABCD中,CB=CD,∠ABC+∠ADC=180°,

∠ECF= ∠BCD, 问题1的结论是否仍然成立?请说明理由.

(拓展延伸)

问题3:在问题2的条件下,若点EAB的延长线上,点FDA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE、DF、EF之间存在什么样的等量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B;直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q.

(1)求证:OB=OC;
(2)当点C坐标为(0,3)时,求点Q的坐标;
(3)当△OPC≌△ADP时,直接写出C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB=CD=24,AD=BC=50,E是AD上一点,且AE∶DE=9∶16,判断△BEC的形状.

查看答案和解析>>

同步练习册答案