【题目】如图,一次函数 y=kx+2(k<0)的图象经过点 C(3,0),且反比例函数 y= 的图象与该一次函数的图象交于第二、四象限内的 A,B 两点.
(1)求该一次函数的解析式;
(2)若 AC=2BC,求 m 的值.
【答案】(1)y=﹣x+2;(2)﹣12.
【解析】
(1)依据一次函数 y=kx+2(k<0)的图象经过点 C(3,0),可得 k=﹣,进而得到一次函数的解析式;
(2)作 AD⊥x 轴于点 D,BE ⊥x 轴于点 E,依据△ACD∽△BCE,可得 AD=2BE.设B 点纵坐标为﹣n,则 A 点纵坐标为 2n,进而得到 A(3﹣3n,2n),B(3+ n,﹣n),依据反比例函数 y=的图象经过 A、B 两点,即可得到 m 的值.
解:(1)∵一次函数 y =kx+2(k<0)的图象经过点 C(3,0),
∴3k+2=0, 解得 k=﹣,
∴一次函数的解析式为 y=﹣ x+2;
(2)如图,作 AD⊥x 轴于点 D,BE⊥x 轴于点 E,则 AD∥BE.
∵AD∥BE,
∴△ACD∽△BCE,
∴=2,
∴ AD=2BE.
设 B 点纵坐标为﹣n,则 A 点纵坐标为 2n.
∵直线 AB 的解析式为 y=﹣x+2,
∴A(3﹣3n,2n),B(3+n,﹣n),
∵反比例函数 y=的图象经过 A、B 两点,
∴(3﹣3n)2n=(3+n)(﹣n),解得 n1=2,n2=0(不合题意,舍去),
∴m=(3﹣3n)2n=﹣3×4=﹣12.
科目:初中数学 来源: 题型:
【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
设(其中均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
当均为正整数时,若,用含m、n的式子分别表示,得= ,= ;
(2)利用所探索的结论,找一组正整数,填空: + =( + )2;
(3)若,且均为正整数,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为l800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:
制作普通花束(束) | 制作精致花束(束) | 所用时间(分钟) |
10 | 25 | 600 |
15 | 30 | 750 |
请根据以上信息,解答下列问题:
(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?
(2)2019年11月花店老板要求小华本月制作普通花束的总时间不少于3000分钟且不超过5000分钟,则小华该月收入最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料,然后解答问题:
我们新定义一种三角形,两边的平方和等于第三边平方的k倍的三角形叫做“k倍三角形”(k为正实数).
(1)理解:根据“k倍三角形”的定义填空(填“锐角”、“直角”或“钝角”):
①当时,k倍三角形一定是_____________三角形;
②当时,k倍三角形一定是______________三角形.
(2)探究:当时,已知Rt△ABC为“k倍三角形”,且,,求所有满足条件的k值.
(3)拓展:若Rt△ABC是“k倍三角形”,且,,,.当时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地后停留了45分钟,立即按原路以另一速度匀速返回,直至与慢车相遇.已知慢车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,则快车从乙地返回时的速度为__________千米/时
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是双曲线在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第四象限,随着点A的运动,点C的位置也不断变化,但点C始终在第四象限,且双曲线始终经过点C,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2),过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数y=(x>0)的图象经过点M,在该反比例函数的图象上是否存在一点P,使△PMN的面积等于△OMN的面积的一半,若存在,求点P的坐标,若不存在,请说明理由.
(3)若反比例函数y=(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com