精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,G是BC中点,DE⊥AG于E,BF⊥AG于F,GN∥DE,M是BC延长线上一点。

(1)求证:△ABF≌△DAE

(2)尺规作图:作∠DCM的平分线,交GN于点H(保留作图痕迹,不写作法和证明),试证明GH=AG。

【答案】1)证明见解析;

2)作图见解析,证明见解析.

【解析】解:∵ 四边形ABCD是正方形

AB=BC=CD=DA

DAB=ABC=90°

DAE+GAB=90°

DEAG BFAG

AED=BFA=90°

DAE +ADE=90°

GAB =ADE

ABFDAE

ABFDAE

2)作图略

方法1:作HIBM于点I

GNDE

AGH=AED=90°

AGB+HGI=90°

HIBM

GHI+HGI=90°

AGB =GHI

GBC中点

tanAGB=

tanGHI= tanAGB=

GI=2HI

CH平分∠DCM

HCI=

CI=HI

CI=CG=BG=HI

ABGGIH

ABGGIH

AG=GH

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一个多边形的内角和是外角和的2倍,此多边形是________边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)操作发现:

如图①'在正方形ABCD中,过A点有直线AP,点B关于AP的对称点为E,连接DE交AP于点F,当∠BAP=20°时,则∠AFD= °;当∠BAP=α°(0<α<45°)时,则∠AFD= °;猜想线段DF, EF, AF之间的数量关系:DF-EF= AF(填系数);

(2)数学思考:

如图②,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他条件不变,则∠AFD= °;线段DF, EF, AF之间的数量关系是否发生改变,若发生改变,请写出数量关系并说明理由;

(3)类比探究:

如图③,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他条件不变,则∠AFD= °;请直接写出线段DF,EF,AF之间的数量关系: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据﹣2135的极差是(  )

A.3B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3s后,两点相距18个单位长度.已知点B的速度是点A的速度的5(速度单位:单位长度/s).

(1)求出点A、点B运动的速度,并在数轴上标出A,B两点从原点出发运动3s时的位置;

(2)若A,B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?

(3)当A,B两点从(2)中的位置继续以原来的速度沿数轴向左运动的同时,另一点C从原点位置也向点A运动,当遇到点A后,立即返回向点B运动,遇到点B后又立即返回向点A运动,如此往返,直到点B追上点A时,点C立即停止运动.若点C一直以8个单位长度/s的速度匀速运动,则点C从开始运动到停止运动,行驶的路程是多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线y=﹣xx﹣2)(0≤x≤2)记为C1,它与x轴交于两点OA1C1A1旋转180°得到C2,交x轴于A2;将C2A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6若点P(11,m)在第6段抛物线C6m=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一个由边长为1的小正方形组成的10×10的正方形网格,

1)在网格中画出将ABC向右平移4个单位后的A1B1C1

2ABC绕点O旋转180°后,点A与点A2重合,请在网格中画出点O,并画出ABC绕点O旋转180°后的A2B2C2

3)描述A1B1C1A2B2C2的位置关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一组数据75 80859080则它的众数和中位数分别为(

A.7580B.8085C.8090D.8080

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D.

(Ⅰ)如图①,若∠OCA=60°,求OD的长;

(Ⅱ)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.

查看答案和解析>>

同步练习册答案