精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,以点AB为直径的⊙O分别与ACBC交于点ED,且BD=CD

1)求证:∠B=∠C

2)过点DDFOD,过点FFHAB.若AB=5CD=,求AH的值.

【答案】(1)详见解析;(2)

【解析】

1)根据线段垂直平分线和等腰三角形的性质可得结论;

2)根据题意可知OD△ABC的中位线,即OD∥AC,故DF⊥AC,根据圆周角定理AD⊥BC,可知△DCF∽△ACD,进而可求得CF=1DF=2AF=4 过点DDM⊥AB,可知∠CFD∠BMD90°,可推出△CDF≌△BDM,即可得CF=BM=1OM=

又根据△AFH∽△ODM,可得

(1)证明:连结AD.

AB为⊙O的直径,

∴∠ADB90°,

∴ADBC

BD=CD

AC=AB

∴∠B=∠C.

(2)∵AO=BOBD=CD

OD△ABC的中位线

ODAC

DFOD

DFAC

ADBC

△DCF∽△ACD

AC=AB=5CD=

CF=1DF=2

AF=4

过点DDM⊥AB

∴∠CFD=∠BMD90°,

∴△CDF≌△BDM

CF=BM=1OM=

又∵△AFH∽△ODM

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】课题学习:矩形折纸中的数学实践操作:折纸不仅是一项有趣的活动,也是一项益智的数学活动.数学课上,老师给出这样一道题将矩形纸片ABCD沿对角线AC翻折,使点B落在矩形所在平面内,B'CAD相交于点E,如图1所示.

探素发现:

1)在图1中,①请猜想并证明AEEC的数量关系;②连接B'D,请猜想并证明B'DAC的位置关系;

2)第1小组的同学发现,图1中,将矩形ABCD沿对角线AC翻折所得到的图形是轴对称图形.若沿对称轴EF再次翻折所得到的图形仍是轴对称图形,展开后如图2所示,请你直接写出该矩形纸片的长、宽之比;

3)若将图1中的矩形变为平行四边形时(ABBC),如图3所示,(1)中的结论①和结论②是否仍然成立,请直接写出你的判断.

拓展应用:

4)在图3中,若∠B30°,AB2,请您直接写出:当BC的长度为多少时,△AB'D恰好为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.

满意度

人数

所占百分比

非常满意

12

10%

满意

54

m

比较满意

n

40%

不满意

6

5%

根据图表信息,解答下列问题:

(1)本次调查的总人数为______,表中m的值为_______

(2)请补全条形统计图;

(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(m2)B(3n)两点关于原点O对称,反比例函数y的图象经过点A

(1)求反比例函数的解析式并判断点B是否在这个反比例函数的图象上;

(2)P(x1y1)也在这个反比例函数的图象上,﹣3x1mx10,请直接写出y1的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB于点EF,且点EF为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为,则为( )(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O与直线l1相离,圆心O到直线l1的距离OB2OA4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为yax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.

(1)当科研所到宿舍楼的距离x3km时,防辐射费y____万元,a____b____

(2)m90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?

(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题

1)甲登山的速度是每分钟  米;乙在A地提速时,甲距地面的高度为  米;

2)若乙提速后,乙的速度是甲登山速度的3倍;

求乙登山全过程中,登山时距地面的高度y(米)与登山时间x(分钟)之间的函数解析式;

乙计划在他提速后5分钟内追上甲,请判断乙的计划能实现吗?并说明理由;

3)当x为多少时,甲、乙两人距地面的高度差为80米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线k0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣64),则△AOC的面积为_____

查看答案和解析>>

同步练习册答案